Physics, asked by gtneelam243, 3 months ago

prove that the path of the projectile is parabolic. also find 1. maximum height 2. time of flight
3.horizontal range..​

Answers

Answered by nusrathcassim
2

Explanation:

let the speed of the projected object = to (a)

vertical component =

a \sin( \alpha  )

horizontal component

a \cos( \alpha )

horizontal acceleration = 0

vertical acceleration = -g

use \: this \: eqution \: to \: get \: 2 \: equtions \:  \\ vertically \: and \: horiozontally

s = ut +  \frac{1}{2} a{t}^{2}

therefore we get for horizontal

x = a \cos( \alpha )  t+  \frac{1}{2}a {t}^{2}   \\ x = a \cos( \alpha ) t \\ then \: get \: an \: equatin \: for \: t \\  \frac{x}{ \cos( \alpha ) }  = t

for vertical

y = u \sin( \alpha ) t  + \frac{1}{2} a {t}^{2}  \\ then \: subsitude \: eqution \: we \: get \: for \: \\  (t) \\y =  \\ a \sin( \alpha )  \times  \frac{x}{a \cos( \alpha ) }  -  \frac{1}{2}  \times   \frac{ {x}^{2} }{ {a}^{2} {cos}^{2} \alpha   }

y =  \tan( \alpha ) x -  \frac{1}{2}g  \frac{ {x}^{2} }{ {a}^{2}  {cos}^{2} \alpha  }

this equatio is equal to the eqaution of a parabola

y = a {x}^{2}  + bx + c \\ where \: a \: b \: c \: are \: constants

therefore we proove that the projectile is parabolic

Attachments:
Similar questions