prove that the perpendicular at the point of contact to tangent to a circle passes through the centre
Answers
Answered by
3
Let ,
O is the centre of the given circle.
A tangent PR has been drawn touching the circle at point P.
Draw QP ⊥ RP at point P, such that point Q lies on the circle.
∠OPR = 90° (radius ⊥ tangent)
Also, ∠QPR = 90° (Given)
∴ ∠OPR = ∠QPR
Now, above case is possible only when centre O lies on the line QP.
Hence, perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.
Hope it helps!!
plz follow me and Mark as brainlist and thank this answer only plz
Similar questions
World Languages,
2 months ago
Math,
2 months ago
Hindi,
4 months ago
History,
10 months ago
Biology,
10 months ago