Math, asked by ganeshkumar14, 4 months ago

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre



plzzz answer it ​

Answers

Answered by itzmysticalgirl1
16

ANSWER

Given a circle with center O and AB the tangent intersecting circle at point P

and prove that OP⊥AB

We know that tangent of the circle is perpendicular to radius at points of contact Hence

OP⊥AB

So, ∠OPB=90

o ..........(i)

Now lets assume some point X

Such that XP⊥AN

Hence ∠XPB=90

o .........(ii)

From eq (i) & (ii)

∠OPB=∠XPB=90

o

Which is possible only if line XP passes though O

Hence perpendicular to tangent passes though centre..

Attachments:
Similar questions