Math, asked by Rajan980, 1 year ago

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answers

Answered by Niruru
30
Hey friend !

Kindly refer to the attachment.

♡ Hope this helps !
Attachments:

Rajan980: Your handwriting is very good.
Niruru: Thanks ^_^
Answered by Sanjeevliv
11
Hi friend, here is the required answer.
---------------------------------------------------
O is the centre of the given circle.

A tangent PR has been drawn touching the circle at point P.

Draw QP ⊥ RP at point P, such that point Q lies on the circle.

∠OPR = 90°  (radius ⊥ tangent)

Also, ∠QPR = 90°  (Given)

∴ ∠OPR = ∠QPR

Now, above case is possible only when centre O lies on the line QP.

Hence, perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.
-------------------------------------------------
hope it helps u
Attachments:
Similar questions