Prove that the point (0,0),(5,5) and (-5,5)are the vertices of a right isosceles triangle.
Answers
Hope this helps you....
#answerwithquality & #BAL
Answer:
Given : Points (0, 0), (5, 5) and (-5, 5) are vertices of a triangle.
To prove : Vertices of a right-angled isosceles triangle
Solution :
Let A(0, 0), B(5, 5) and C (- 5, 5)
By using distance formula : √(x2 - x1)² + (y2 - y1)²
Vertices : A(0, 0), B(5, 5)
Length of side AB = √(5 - 0)² + (5 - 0)²
AB = √5² + (5)²
AB = √25 + 25
AB = √50 units
Vertices : B(6, 4) and C (- 1, 3)
Length of side BC = √(- 5 - 5)² + ( 5 - 5)²
BC = √(-10)² + (0)²
BC = √100 + 0
BC = √100 units
Vertices : A(3, 0), C (- 1, 3)
Length of side AC = √(- 5 - 0)² + (5 - 0)²
AC = √(-5)² + (5)²
AC = √25 + 25
AC = √50 units
Since the 2 sides AB = AC = √50 .
Therefore ∆ is an isosceles.
Now, in ∆ABC, by using Pythagoras theorem
BC² = AB² + AC²
(√100)² = (√50)². + (√50)²
100 = 50 + 50
100 = 100
Since BC² = AB² + AC²
Hence, the given vertices of a triangle is a right isosceles triangle.
Step-by-step explanation: