Math, asked by moozashraf5396, 1 month ago

Prove that the point (-2, -11 ) is equidistance from the two points (-3, 7) and (4,6).

Answers

Answered by vipinkumar212003
3

Step-by-step explanation:

\blue{\mathfrak{\underline{\large{given}}}:}  \\ points \: (-3,  7), \: (4,6) \: and \: (-2, \: -11)\\ \blue{\mathfrak{\underline{\large{to \: find}}}:} \\ point(-2, \: -11) \: is \: equidistant \: from \: point \: (-3,  7) \: and \: (4,6)  \\ \blue{\mathfrak{\underline{\large{finding}}}:}\\  let \: A=(-3,  7), \: B=(4,6), \: C=(-2, \: -11) \\ \blue{\mathfrak{\underline{\large{Using \: distance \: formula }}}:} \\ distance =  \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} }  \\ AC= \sqrt{ {( - 2 - ( - 3))}^{2} +  {( - 11 - 7)}^{2}  }  \\  =  \sqrt{ {(1)}^{2} +  {( - 18)}^{2}  }  \\  =  \sqrt{1 + 324}  \\   = \sqrt{325}  \\  =  \sqrt{5 \times 5 \times 13}  \\ =  5 \sqrt{13}  \\ CB= \sqrt{ {(4 - ( - 2))}^{2} +  {(6 - ( - 11))}^{2}  }  \\  =  \sqrt{ {(6)}^{2} +  {(17)}^{2}  }  \\   = \sqrt{36 + 289 }  \\   = \sqrt{ 325}  \\  = 5 \sqrt{13}  \\ \blue{\mathfrak{\large{Since,\:AC=CB}}} \\ \blue{\mathfrak{\large{Hence,\:point \:C=(-2, \: -11) \: is \: equidistant \: from }}} \\ \blue{\mathfrak{\large{ points \:A=(-3,  7) \: and \:  B=(4,6), }}} \\  \\ \red{\mathfrak{\underline{\large{hope \: it \: helps \: you}}}} \\ \green{\mathfrak{\underline{\large{mark \: me \: brainliest}}}}

Similar questions