PROVE THAT THE POINT (3,-2) , (-5,4) AND (-1,1) are collinear.
PROVIDE FULL EXPLANATION PLEASE.
Answers
→ Given ←
3 points (3, -2) , (-5, 4) and (-1, 1).
Let -
- Point A be (3, -2).
- Point B be (-5, 4).
- Point C be (-1, 1).
→ To Prove ←
ABC is co-linear.
→ Proof ←
We know,
Area of a triangle = 1/2 [x₁ (y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]
We have :-
- x₁ = 3 & y₁ = -2
- x₂ = -5 & y₂ = 5
- x₃ = -1 & y₃ = 1
Substituting the values :-
A = 1/2 { 3(5 - 1) + (-5)[1 - (-2)] + (-1)(-2 - 1) }
→ A = 1/2 [ (3 × 4) + (-5 × 3) + (-1 × -3) ]
→ A = 1/2 [ 12 - 15 + 3 ]
→ A = 1/2 (15 - 15)
→ A = 1/2 (0)
→ A = 0/2
→ A = 0 sq. units
Hence the given points are co-linear.
Proved !
Answer:
→ Given ←
3 points (3, -2) , (-5, 4) and (-1, 1).
Let -
Point A be (3, -2).
Point B be (-5, 4).
Point C be (-1, 1).
→ To Prove ←
ABC is co-linear.
→ Proof ←
We know,
Area of a triangle = 1/2 [x₁ (y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]
We have :-
x₁ = 3 & y₁ = -2
x₂ = -5 & y₂ = 5
x₃ = -1 & y₃ = 1
Substituting the values :-
A = 1/2 { 3(5 - 1) + (-5)[1 - (-2)] + (-1)(-2 - 1) }
→ A = 1/2 [ (3 × 4) + (-5 × 3) + (-1 × -3) ]
→ A = 1/2 [ 12 - 15 + 3 ]
→ A = 1/2 (15 - 15)
→ A = 1/2 (0)
→ A = 0/2
→ A = 0 sq. units
Proved !