Prove that the points (0, 0), (5, 5) and (-5, 5) are the vertices of a right isosceles triangle.
Answers
Given : Points (0, 0), (5, 5) and (-5, 5) are vertices of a triangle.
To prove : Vertices of a right-angled isosceles triangle
Solution :
Let A(0, 0), B(5, 5) and C (- 5, 5)
By using distance formula : √(x2 - x1)² + (y2 - y1)²
Vertices : A(0, 0), B(5, 5)
Length of side AB = √(5 - 0)² + (5 - 0)²
AB = √5² + (5)²
AB = √25 + 25
AB = √50 units
Vertices : B(6, 4) and C (- 1, 3)
Length of side BC = √(- 5 - 5)² + ( 5 - 5)²
BC = √(-10)² + (0)²
BC = √100 + 0
BC = √100 units
Vertices : A(3, 0), C (- 1, 3)
Length of side AC = √(- 5 - 0)² + (5 - 0)²
AC = √(-5)² + (5)²
AC = √25 + 25
AC = √50 units
Since the 2 sides AB = AC = √50 .
Therefore ∆ is an isosceles.
Now, in ∆ABC, by using Pythagoras theorem
BC² = AB² + AC²
(√100)² = (√50)². + (√50)²
100 = 50 + 50
100 = 100
Since BC² = AB² + AC²
Hence, the given vertices of a triangle is a right isosceles triangle.
Some more questions :
Prove that the points (3, 0), (6, 4) and (- 1, 3) are vertices of a right-angled isosceles triangle.
https://brainly.in/question/15937740
Show that the quadrilateral whose vertices are (2, -1), (3, 4), (-2, 3) and (-3, -2) is a rhombus.
https://brainly.in/question/15937739
Assumption
P(0, 0), Q(5, 5) and R(-5, 5)
Now,
Using distance formula,
PQ = √(x2 - x1)² + (y2 - y1)²
PQ= √(5 - 0)² + (5 - 0)²
PQ = √5² + (5)²
PQ = √25 + 25
PQ = √50 units
Now,
QR = √(-5 - 5)² + ( 5 - 5)²
QR = √(-10)² + (0)²
QR = √100 + 0
QR = √100 units
Also,
PR = √(- 5 - 0)² + (5 - 0)²
PR = √(-5)² + (5)²
PR = √25 + 25
PR = √50 units
Here we get,
PQ = PR = √50
Hence,
Triangle is an isosceles.
Now,
In ∆PQR,
Using Pythagoras theorem
QR² = PQ² + PR²
(√100)² = (√50)² + (√50)²
100 = 50 + 50
100 = 100
Hence,
QR² = PQ² + PR²
Therefore,
Vertices of a ∆ is a right isosceles triangle.