Math, asked by haseeb31, 11 months ago

Prove that the points (1,5).(-7, 9) and (-10, -17) are the vertices of a
right angled triangle​

Answers

Answered by harendrachoubay
2

It is proved, the points "(1,5).(-7, 9) and (-10, -17)" are the vertices of a

right angled triangle​.

Step-by-step explanation:

Let  A(1, 5), B( - 7, 9)and C( - 10,- 17) are the vertices of a triangle right angled triangle.

AB^{2} = (-7 - 1)^{2} + ( 9 - 5)^{2}

= (- 8)^{2} + 4^{2} = 64 + 16 = 80

BC^{2} = (- 10 + 7)^{2} + ( - 17  - 9)^{2}

= (- 3)^{2} + ( - 26)^{2}

=  9 + 676 = 685

CA^{2} = (- 10 - 1)^{2} + ( - 17 - 5)^{2}

= (- 11)^{2} + ( - 22)^{2}

= 121 + 484 = 605

AB^{2} + CA^{2} = 80 + 605 = 685 = BC^{2} ,

it is proved, the points (1,5).(-7, 9) and (-10, -17) are the vertices of a

right angled triangle​.

Similar questions