Math, asked by mohammadsaddam7045, 11 months ago

Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus. Also, find its area.

Answers

Answered by greatanswers
3

The area of the rhombus is 24 square units.

Step-by-step explanation:

Let us assume P(x1,y1), Q(x2,y2), R(x3,y3) and S(x4,y4) to be P(3,0) Q(4,5) R(-1,4) and S(-2,-1) which  are the vertices of the rhombus.

The length of diagonal PR =  √(x₂ - x₁)² + (y₂ - y₁)²

x₁ = 3 y₁ = 0  x₂ =-1  y₂ = 4

=  √(-1 - 3)² + (4 - 0)²

=  √(-4)² + (4)²

=  √16 + 16

PR =  √32

The length of diagonal QS =  √(x₂ - x₁)² + (y₂ - y₁)²

x₁ = 4 y₁ = 5  x₂ =-2  y₂ = -1

=  √(-2-4)² + (-1-5)²

=  √(-6)² + (-6)²

=  √36 + 36

QS=  √72

Area of rhombus = (1/2) x PR x QS

                               =(1/2) x √32 x √72

                               =  (1/2)4√2 x 6√2

Area of the rhombus =  24 square units.  

Area of the rhombus = ½ * diagonals

= ½*PR*QS

= 1/2*√32*√72

= 1/2*48

=24

Area of the rhombus = ½ * diagonals

Hence proved.

Answered by topwriters
2

Area of rhombus = = 24 square units.

Step-by-step explanation:

Let's take A(3,0) B(4,5) C(-1,4) and D(-2,-1) be the vertices of the rhombus.

Length of diagonal = AC = BD

AC² = (-1-3)² + (4-0)²  = (-4)² + (4)² = 16 + 16 = 32

BD² = (-2-4)² + (-1-5)² = (-6)² + (-6)² = 36 + 36 = 72

Area of rhombus = (1/2) * BD * AC

= (1/2) * √32 * √72

= (1/2) * 4√2 * 6√2

= 24 square units.

Similar questions