Math, asked by khushbu58, 9 months ago

Prove that the points (3,0),(4,5),(-1,4) and (-2,-1) taken in order form a rhombus.​

Answers

Answered by Anonymous
51

\huge\underline\mathrm{SOLUTION:-}

Let,

  • A (3,0)
  • B (4,5)
  • C (-1,4)
  • D (-2,-1)

________________________________

\mathsf {AB =  \sqrt{(4 - 3) {}^{2}  + (5 - 0) {}^{2} } }

\mathsf { =  \sqrt{26} }

________________________________

\mathsf {BC =  \sqrt{ (- 1 - 4) {}^{2}  + (4 - 5) {}^{2}  } }

\mathsf {=  \sqrt{26} }

________________________________

\mathsf {CD =  \sqrt{ - 2 + 1) {}^{2} + ( - 1 - 4) {}^{2}  } }

\mathsf { =  \sqrt{26} }

________________________________

\mathsf {DA =  \sqrt{(3 + 2) {}^{2} + (0 + 1) {}^{2}  } }

\mathsf {=  \sqrt{26} }

________________________________

Since, AB = BC = CD = DA

Hence:

  • ABCD is a Rhombus.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions