Math, asked by MANOJPRADHANI6171, 1 day ago

Prove that the points (3,0),(6,4)& (-1,3) are the vertices of a rightangled isosceles triangle ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that (3,0),(6,4) and (-1,3) represents the vertices of triangle ABC.

So,

Coordinates of A = (3, 0)

Coordinates of B = (6, 4)

Coordinates of C = (- 1, 3)

Since, we have to show that A, B, C forms the vertices of right - angled isosceles triangle.

So, Using Distance Formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane, then distance between A and B is given by

\boxed{\tt{ AB = \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} } \: }} \\

So, Consider

\rm :\longmapsto\:AB

\rm \:  =  \:  \sqrt{ {(6 - 3)}^{2}  +  {(4 - 0)}^{2} }

\rm \:  =  \:  \sqrt{ {(3)}^{2}  +  {(4)}^{2} }

\rm \:  =  \:  \sqrt{9 + 16}

\rm \:  =  \:  \sqrt{25}

\rm \:  =  \: 5

\rm\implies \:\boxed{\tt{  \:  \: AB \:  =  \: 5 \: units}} \\

Now, Consider

\rm :\longmapsto\:BC

\rm \:  =  \:  \sqrt{ {( - 1 - 6)}^{2}  +  {(3 - 4)}^{2} }

\rm \:  =  \:  \sqrt{ {( -7)}^{2}  +  {( - 1)}^{2} }

\rm \:  =  \:  \sqrt{49 + 1}

\rm \:  =  \:  \sqrt{50}

\rm \:  =  \:  \sqrt{5 \times 5 \times 2}

\rm \:  =  \: 5 \sqrt{2}

\rm\implies \:\boxed{\tt{  \:  \: BC \:  =  \: 5 \sqrt{2}  \: units}} \\

Now, Consider

\rm :\longmapsto\:AC

\rm \:  =  \:  \sqrt{ {( - 1 - 3)}^{2}  +  {(3 - 0)}^{2} }

\rm \:  =  \:  \sqrt{ {( - 4)}^{2}  +  {(3)}^{2} }

\rm \:  =  \:  \sqrt{16 + 9 }

\rm \:  =  \:  \sqrt{25 }

\rm \:  =  \: 5

\rm\implies \:\boxed{\tt{  \:  \: AC \:  =  \: 5 \: units}} \\

From above, we concluded that

\bf\implies \:AB = AC

and

\rm :\longmapsto\: {AB}^{2} +  {AC}^{2}

\rm \:  =  \:  {5}^{2} +  {5}^{2}

\rm \:  =  \:  25 + 25

\rm \:  =  \:  50

\rm \:  =  \:  5 \times 5 \times 2

\rm \:  =  \:  {(5 \sqrt{2}) }^{2}

\rm \:  =  \:  {BC}^{2}

Hence,

\bf :\longmapsto\: {AB}^{2} +  {AC}^{2}  =  {BC}^{2}

So, By Converse of Pythagoras Theorem, Triangle ABC is right angled triangle, right angled at A.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE :-

1. Section formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the cartesian plane and C(x, y) be the point which divides AB internally in the ratio m₁ : m₂, then the coordinates of C is given by

\begin{gathered} \boxed{\tt{ (x, y) = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)}} \\ \end{gathered}

2. Mid-point formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and C(x, y) be the mid-point of AB, then the coordinates of C is given by

\begin{gathered}\boxed{\tt{ (x,y) = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)}} \\ \end{gathered}

3. Centroid of a triangle

Centroid of a triangle is defined as the point at which the medians of the triangle meet and is represented by the symbol G.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle and G(x, y) be the centroid of the triangle, then the coordinates of G is given by

\begin{gathered}\boxed{\tt{ (x, y) = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)}} \\ \end{gathered}

4. Area of a triangle

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle, then the area of triangle is given by

\begin{gathered}\boxed{\tt{ Area =\dfrac{1}{2}\bigg|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\bigg|}} \\ \end{gathered}

5. Condition for 3 points to be Collinear

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the coordinates in cartesian plane, then points A, B and C are collinear, then

\begin{gathered}\boxed{\tt{x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0}} \\ \end{gathered}

Similar questions