Math, asked by ItzFadedGuy, 3 months ago

Prove that the points (3,0), (6,4) and (-1,3) are the vertices of a right angled isosceles triangle.

(No spamming \checkmark)​

Answers

Answered by Divyanshuji23215
8

Since AB2+AC2=BC2 and AB=AC

∴ ABC is a right angled isosceles triangle

Attachments:
Answered by telex
183

Question :-

Prove that the points (3,0), (6,4) and (-1,3) are the vertices of a right angled isosceles triangle.

____________________

Solution :-

Let A(3, 0), B(6,4) and C(-1,3) be the

given points.

\red{\maltese}\:\sf{ab =  \sqrt{(6 - 3)^{2}  +  {(4 - 0)}^{2} }}

 \sf:  \implies AB=  \sqrt{ {(3)}^{2}  +  {(4)}^{2} }

 \sf:  \implies AB =  \sqrt{9 + 16}

  \sf:  \implies AB =  \sqrt{25}

 \red{ \maltese}  \:  \sf {BC =  \sqrt{ {( - 1 - 6)}^{2} + (3 - 4)^{2}  }}

 \sf :  \implies BC =  \sqrt{ {( - 7)}^{2}  + ( - 1)^{2} }

 \sf:  \implies BC =  \sqrt{49 + 1}

 \sf  :   \implies BC =  \sqrt{50}

 \red{ \maltese} \:  \sf{AC =   \sqrt{ {( - 1 - 3)}^{2}   + (3 - 0)^{2} }}

 \sf:  \implies AC =  \sqrt{ {( - 4)}^{2}  +  {(3)}^{2} }

 \sf  : \implies AC =  \sqrt{16 + 9}

 \sf :  \implies AC =  \sqrt{25}

 \sf :  \implies  {AB}^{2}  =  {({ \sqrt{25} })}^{2}

 \sf :  \implies  {AB}^{2}  = 25

 \sf :  \implies  {AC}^{2}  = 25

 \sf:  \implies  {BC}^{2}  =  {( \sqrt{50} )}^{2}

 \sf  : \implies  {BC}^{2}  = 50

 \sf \because  {AB}^{2}  +  {AC}^{2}  =  {BC}^{2}

 \sf \: and \: AB = AC

 \sf \therefore \triangle \: ABC \: is \:  a\: right \: angled \: isosceles \: triangle

Hence Proved

____________________

Similar questions