Math, asked by Sdsdsdsdtttt, 10 months ago

Prove that the points A(0,1), B(–2,3), C(6,7) and D(8,3) are the vertices of a rectangle ABCD.

Answers

Answered by Anonymous
256

 \:  \red{\boxed{\sf{Solution.}}}

 \tt \: We \: have

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red{A } \implies(0, - 1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red B \implies( - 2, 3)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \red C \implies (6,7)

 \rm and \:    \:  \:  \:  \:  \:  \:  \:  \:   \tt \red D \implies(8,3)

 \:  \:  \:  \:  \:  \:  \:  \sf ∴ \red{AB} =  \sqrt[]{( - 2 - 0) {}^{2}  + (3 + 1) {}^{2} }

 \:  \:  \:  \:  \:  \sf =  \sqrt{4 + 16 \: }

  \:  \:  \:  \:  \: \sf =  \sqrt{20 \: }  =  \sqrt{4 \times 5 \: }

  \:  \:  \:  \:  \:  \:  \sf = 2 \sqrt{5 \: }

  \:  \:  \:  \:  \: \sf \red{BC} =  \sqrt{(6 + 2) {}^{2}  + (7 - 3) {}^{2} }  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \sf  =  \sqrt{64 + 16 \: }

 \:  \:  \:  \:  \:  \:  \:  \sf =  \sqrt{80 \: }  =  \sqrt{16 \times 5 \: }

  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf 4 \sqrt{5 \: }

 \:  \:  \:  \:  \sf \red{CD} =  \sqrt{(8 - 6) {}^{2}  + (3 - 7) {}^{2} }

 \:  \:  \:  \:  =  \sf \sqrt{4 + 16 \: } =  \sqrt{20 \: }

  \: \:  \:  \:  \:  \:  =  \sf \sqrt{4  \times 5 \: }  = 2 \sqrt{5 \: }

  \:  \:  \:  \:  \: \sf \red{DA} =  \sqrt{(0 - 8) {}^{2}  + ( - 1 - 3) {}^{2} }

  \:  \:  \:  \:  \:  \:  \: =  \sf  \sqrt{64 + 16 \: }

 \:  \:  \:  \:  \:  \:  =  \sf  \sqrt{80 \:  }  =  \sqrt{16 \times 5 \: }

 \:  \:  \:  \:  \:  \:  \:  =  \sf 4 \sqrt{5 \: }

 \rm \purple{Here \: AB = CD \: and \: AD = BC}

 \tt \: i.e., \: opposite \: sides \: of \\  \tt a \: quadrilateral \: are \: equal

 \rm \pink{ ∴ ABCD \: is \: a \: parallelogram.}

 \tt \: Now \: diagonal

 \:  \:  \:  \:  \:  \:  \bf AC =  \sqrt{(6 - 0) {}^{2}  + (7 + 1) {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \sf \ =  \sqrt{36 + 64 \: }

 \:  \:  \:  \:  \:  \:  \:  =  \sf \sqrt{100 \:  \: } = 10

 \rm and \: diagonal \:  \:  \:  \: BD \sf  =  \sqrt{(8 + 2) {}^{2}  + (3 - 3) {}^{2} }

 \:  \:   \:  \:  \: \:  \sf  =  \sqrt{100 \: }  = 10

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf ∴ AC = BD

 \sf \red{i.e., \:  \:  \:  \:  \: diagonals \: are \: equal}

 \bf{ ∴ Points \: A, \: B, \: C, \: D \: are \: the \: vertices \: of \: a } \\  \bf{rectangle \: ABCD.}

Answered by Anonymous
169

\huge\textsf{\underline \red{AnsWer:}}

➠ᴡᴇ ᴀʀᴇ ʜᴇʀᴇ ɢɪᴠᴇɴ ᴘᴏɪɴᴛs ᴀ,ʙ,ᴄ ᴀɴᴅ ᴅ ᴀɴx ᴡᴇ ʜᴀᴠᴇ ᴛᴏ ᴘʀᴏᴠᴇ ᴛʜᴀᴛ ʜs ʀ ʜ ʀɪs ғ ʀɴɢʟ ʙ.

➠ᴘᴏɪɴᴛs :—

ᴀ = (0,1)

• ʙ= (-2,3)

• ᴄ = (6,7)

• ᴅ = (8,3)

sᴏ, ʙᴇғᴏʀᴇ sᴏʟᴠɪɴɢ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ,ɪᴛ ɪs ɴᴇᴄᴇssᴀʀʏ ᴛᴏ ᴋɴᴏᴡ ᴛʜᴇ ᴍᴇᴛʜᴏᴅ ᴛᴏ sᴏʟᴠᴇ ᴛʜɪs ǫᴜᴇsᴛɪᴏɴ ;

ɪғ ᴡᴇ ᴀʀᴇ ɢᴏɪɴɢ ᴛᴏ ᴘʀᴏᴠᴇ ᴛʜᴀᴛ ᴛʜᴇsᴇ ᴀʀᴇ ᴛʜᴇ ᴠᴇʀᴛɪᴄs ᴏғ ʀᴇᴄᴛᴀɴɢʟᴇ ᴛʜᴇɴ :-

• ᴏᴘᴘᴏsɪᴛᴇ sɪᴅᴇs ᴀʀᴇ ᴇǫᴜᴀʟ

• ᴅɪᴀɢɴᴏʟs ᴀʀᴇ ᴇǫᴜᴀʟ

ʟᴇᴛ's ʙᴇɢɪɴ ;

\huge\textsf{\underline \red{Explanation:}}

ғʀʟ, ᴛʜᴀᴛ ᴡᴇ ᴀʀᴇ ɢᴏɪɴɢ ᴛᴏ ᴜsᴇ :-

{\boxed{\sf \orange{Distance \: formula \: = \: \sqrt{ (x_2 - x_1)^2 +(y_2 - y_1)^2} }}}

ɴᴏᴡ, ғɪɴᴅ ᴛʜᴇ ᴅɪsᴛᴀɴᴄᴇ ᴏғ sɪᴅᴇs;

\setlength{\unitlength}{0.78cm}\begin{picture}(12,4)\thicklines\put(5.6,9.1){$A$}\put(5.5,5.8){$B$}\put(11.1,5.8){$C$}\put(11.05,9.1){$D$}\put(4.5,7.5){$side\:1$}\put(8.1,5.3){$side\:2$}\put(11.5,7.5){$side\:3$}\put(8.1,9.5){$side\:4$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(6,6){\line(5,3){5}}\end{picture}

ɴᴏᴡ; [ʀᴇғᴇʀʀɪɴɢ ᴛᴏ ғɪɢᴜʀᴇ]

ғɪʀs ʀ ʜ ʜ sɪ sɪs ʀ ᴇǫᴜᴀʟ :-

\star\normalsize\sf \blue{ \: Distance \: of \: AB(side \: 1):-}

\normalsize\sf{ AB \: = \: \sqrt{(-2-0)^2 + (3+1)^2} }

\normalsize\sf{ AB \: = \: \sqrt{(2)^2 + (4)^2} }

\normalsize\sf{ AB \: = \: \sqrt{ 4 + 16} \: = \: \sqrt{20} }

\normalsize\sf{ AB \: = \: \sqrt{2 \times\ 2 \times\ 5}\: = \: 2\sqrt{5} \: units }

\star \normalsize\sf \pink{\: Distance \: of \: BC(side \: 2):-}

\normalsize\sf{ BC \: = \: \sqrt{(6+2)^2 + (7-3)^2} }

\normalsize\sf{ BC \: = \: \sqrt{(8)^2 + (4)^2} }

\normalsize\sf{ BC \: = \: \sqrt{ 64 + 16} \: = \: \sqrt{80} }

\normalsize\sf{ BC \: = \: \sqrt{ 2 \times\ 4 \times\ 4 \times\ 5} \: = \: 4\sqrt{5} \: units }

\star \normalsize\sf \green{ \: Distance \: of \: CD(side \: 3):-}

\normalsize\sf{ CD \: = \: \sqrt{(8-6)^2 + (3-7)^2} }

\normalsize\sf{ CD \: = \: \sqrt{(2)^2 + (-4)^2} }

\normalsize\sf{ CD \: = \: \sqrt{ 4 + 16} \: = \: \sqrt{20} }

\normalsize\sf{ CD \: = \: \sqrt{ 2 \times\ 2 \times\ 5} \: = \: 2\sqrt{5} \: units}

\star \normalsize\sf \purple{\: Distance \: of \: AD(side \: 4):-}

\normalsize\sf{ AD \: = \: \sqrt{(0-8)^2 +(-1-3)^2} }

\normalsize\sf{ AD \: = \: \sqrt{(-8)^2 + (4)^2} }

\normalsize\sf{ AD \: = \: \sqrt{64 + 16} \: = \: \sqrt{80} }

\normalsize\sf{ AD \: = \: \sqrt{ 2 \times\ 4 \times\ 4 \times\ 5} \: = \: 4\sqrt{5} \: units  }

ʜʀ ɴ s ʜ sɪ sɪs ʀ ǫʟ [ ʙ = , ʙ = ]

ɴ, ʜ ʀ ʜ ɪɢɴʟs ʀ ǫʟ :-

\star \normalsize\sf \pink{ \: Distance \: of \: AC (diagnol \: 1):-}

\normalsize\sf{ AC \: = \: \sqrt{(6-0)^2 + (7+1)^2 } }

\normalsize\sf{ AC \: = \: \sqrt{(6)^2 + (8)^2} }

\normalsize\sf{ AC \: = \: \sqrt{ 36 +64 } \: = \: \sqrt{100} }

\normalsize\sf{ AC \: = \: 10 \:  units}

\star \normalsize\sf \green{\: Distance \: of \: BD(diagnol \: 2):-}

\normalsize\sf{ BD \: = \: \sqrt{(8+8)^2 +(3-3)^2} }

\normalsize\sf{ BD \: = \: \sqrt{(10)^2 + (0)^2} }

\normalsize\sf{BD \: = \: \sqrt{100 + 0} \: \sqrt{10} }

\normalsize\sf{BD \: = \: 10}

{\boxed{\sf \orange{Hence \: Prove }}}


SnowySecret72: Good:)
Similar questions