Math, asked by nareshbaisoya1973, 1 year ago

prove that the points A(-3,0), B(1,-3 ) and (4,1) are the vertices of an isosceles right angle triangle. find the area of the triangle.​

Answers

Answered by Anonymous
19

Solution :-

A( - 3, 0 ) B( 1, - 3 ) C( 4, 1 )

Let us find measure if each side of the triangle

i) A( - 3, 0 ) B( 1, - 3)

 \sf Distance ( d )  =  \sqrt{ {( x_2 - x_1)  }^{2} +  {(y_2 - y_1)  }^{2}  }

 \implies \sf  AB=  \sqrt{ { \{1 - ( - 3) \}  }^{2} +  {( - 3 - 0)  }^{2}  }

 \implies \sf  AB=  \sqrt{ { (1 + 3)  }^{2} +  {( - 3 )  }^{2}  }

 \implies \sf  AB=  \sqrt{ { 4 }^{2} +  9  }

 \implies \sf  AB=  \sqrt{ 16+  9  }

 \implies \sf  AB=  \sqrt{25}  = 5 \ units

ii ) B( 1, - 3 ) C( 4, 1 )

 \sf Distance ( d )  =  \sqrt{ {( x_2 - x_1)  }^{2} +  {(y_2 - y_1)  }^{2}  }

 \implies \sf BC=  \sqrt{ { (4 -  1) }^{2} +  { \{1 - ( - 3)  \} }^{2}  }

 \implies \sf BC=  \sqrt{ { 3 }^{2} +  { (1  +  3) }^{2}  }

 \implies \sf BC=  \sqrt{ 9 + 4^{2}  }

 \implies \sf BC=  \sqrt{ 9 + 16 }

 \implies \sf BC=  \sqrt{ 25 }  = 5 \ units

iii ) A( - 3, 0 ) C( 4, 1 )

 \sf Distance ( d )  =  \sqrt{ {( x_2 - x_1)  }^{2} +  {(y_2 - y_1)  }^{2}  }

 \implies \sf AC =   \sqrt{ { \{4 - ( - 3) \}}^{2} +  { (1 - 0) }^{2}  }

 \implies \sf AC =   \sqrt{ {7}^{2} +  1 }

 \implies \sf AC =   \sqrt{ 49 +  1 }  =  \sqrt{50}  \ units

AB = BC = 5 units

We know that

A triangle in which any 2 sides are equal in length is known as an Isosceles triangle.

Therefore, ΔABC is an Isosceles triangle

Hence proved.

Finding the area of the triangle

If we observe

5² + 5² = 25 + 25 = 50 = ( √50 )²

i.e, 5² + 5² = ( √50 )²

i.e AB² + BC² = AC²

i.e, Sum of sides of lengths of 2 sides is equal to square of length of 3rd side.

So, By Pythagoras Theorem

ΔABC is a Right angled triangle

In a Right angled isosceles triangle Base and Height are equal

Base ( AB ) = 5 units

Height ( BC ) = 5 units

ar( ΔABC ) = ( 1/2 ) * Base * Height

→ ar( ΔABC ) = ( 1/2 ) * AB * BC

→ ar( ΔABC ) = ( 1/2 ) * 5 * 5

→ ar( ΔABC ) = ( 1/2 ) * 25

→ ar( ΔABC ) = 25/2 = 12.5 sq.units

Hence, the area of the triangle is 12.5 sq.units.

Similar questions