Math, asked by arnavitiwari738, 4 months ago

prove that the points p(1,2,3),q(-1,-1,-1) and r(3,5,7)are collinear.​

Answers

Answered by Flaunt
80

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given:

Three points namely P(1,2,3) Q(-1,-1,-1) and R(3,5,7)

To Prove :

That the points are collinear

P(1,2,3) Q(-1,-1,-1) and R(3,5,7)

Here,we use distance formula between these three given Points.

To be collinear the distance of any two points be equal to the third one.

x_{1}=1,x_{2}=-1\: \&\: x_{3}=3

y_{1}=2,y_{2}=-1\:\&\: y_{3}=5

z_{1}=3,z_{2}=-1 \:\&\: z_{3}=7

We find first PQ

\sf PQ=  \sqrt{ {(x_{2} - x_{1})}^{2}  +  {(y_{2 }- y_{1})}^{2}  +  {(z_{2} - z_{1})}^{2} }

 \sf=  > PQ =   \sqrt{ {( - 1 - 1)}^{2}  +  {( - 1 - 2)}^{2} +  {( - 1 - 3)}^{2}  }

 \sf=  >  {( - 2)}^{2}  +  {( - 3)}^{2}  +  {( - 4)}^{2}

\sf =  > 4 + 9 + 16 =  \sqrt{29}

\sf QR=  \sqrt{ {(x_{3} - x_{2})}^{2}  +  {(y_{3 }- y_{2})}^{2}  +  {(z_{3} - z_{2})}^{2} }

 \sf=  > QR=  \sqrt{ {(3 + 1)}^{2}  +  {(5 + 1)}^{2}  +  {(1 + 1)}^{2} }

 \sf=   \sqrt{ {4}^{2}  +  {6}^{2} + {8}^{2}   }  =  \sqrt{116}  = 2 \sqrt{29}

\sf PR=  \sqrt{ {(x_{3} - x_{1})}^{2}  +  {(y_{3 }- y_{1})}^{2}  +  {(z_{3} - z_{1})}^{2} }

 \sf=  > PR =  \sqrt{ {(3 - 1)}^{2} +  {(5 - 2)}^{2} +  {(7 - 3)}^{2}   }

 \sf=  >  \sqrt{ {(2)}^{2} +  {(3)}^{2}  +  {(4)}^{2}  }  =  \sqrt{4 + 9 + 16}  =  \sqrt{13 + 16}  =  \sqrt{29}

Here ,we see that

\bold{PQ =  \sqrt{29} }

\bold{QR=2 \sqrt{29}}

\bold{ PR=\sqrt{29}}

Hence ,it is proved that

\bold{\red{PQ + PR = QR}}

 \sf=  >  \sqrt{29}  +  \sqrt{29}  = 2 \sqrt{29}

Hence,the above Points are collinear.

Similar questions