Prove that the product of any 3 consecutive integers is divisible by 6
Answers
Answer:
n (n + 1) (n + 2) is divisible by 6.
Step-by-step explanation:
Given Problem:
Prove that the product of any 3 consecutive integers is divisible by 6.
Solution:
To Prove:
That the product of any 3 consecutive integers is divisible by 6.
------------------------------
Method:
Let three consecutive positive integers be, n, n + 1 and n + 2.
We know that,
When a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is integers.
If n = 3p,
Then,
n is divisible by 3.
If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So,
We can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.
⇒ n (n + 1) (n + 2) is divisible by 3.
Similarly,
Whenever a number is divided 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n and n + 2 = 2q + 2 = 2(q + 1) are divisible by 2.
If n = 2q + 1, then n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 2.
⇒ n (n + 1) (n + 2) is divisible by 2.
Since, n (n + 1) (n + 2) is divisible by 2 and 3.
∴ n (n + 1) (n + 2) is divisible by 6.