Prove that the product of any 'm'consecutive integers is divisible by 'm'
Answers
Step by step explanation :
1. First of all m consecutive integers are taken .
2. Then Applying Common algorithm on "c" and "m" , it is proved that "m" divides "c" for all values of c ..
This is just so simple..
Hope you understand...
If you do , then please mark me as the brainliest..
1. প্ৰথমে একেৰাহে পূৰ্ণসংখ্যা লোৱা হয়।
2. তাৰ পিছত "গ" আৰু "এম"ত উমৈহতীয়া এলগৰিথম প্ৰয়োগ কৰিলে, এইটো প্ৰমাণিত হয় যে "এম"-এ গ.-ৰ সকলো মূল্যৰ বাবে "গ" বিভাজন কৰে।
এইটো কেৱল ইমান সৰল...
আশা কৰোঁ আপুনি বুজি পাইছে...
যদি আপুনি কৰে, তেন্তে অনুগ্ৰহ কৰি মোক আটাইতকৈ মগজু হিচাপে চিহ্নিত কৰক।।
The product of any 'm' consecutive integers is divisible by 'm'.
Concept of Division Algorithm:
The conventional long division algorithm consists of a set of steps that are repeated in the following order: divide, multiply, subtract, and bring down.
Given:
Product of 'm' consecutive numbers are to be taken.
Explanation:
Let consecutive integers may be taken as where is any integer.
Applying Division Algorithm on and we have,
Now, for
For
i.e.,
Similarly for,
i.e.,
And for, , i.e.,
Therefore, for any integral value of , one of divisible by
Thus, is divisible by .
To know more about Division Algorithm, here
https://brainly.in/question/1618095
#SPJ2