Math, asked by amritanshukumar0788, 1 year ago

prove that the quadrilateral formed by the internal bisectors of any quadrilateral is cyclic​

Answers

Answered by sathishvms002
1

Answer:

Step-by-step explanation:

Let us consider ABCDABCD is a quadrilateral AH, BF, CF, DHAH,BF,CF,DH are bisector of \angle A, \angle B, \angle C , \angle D∠A,∠B,∠C,∠D we have to prove EFGHEFGH is cyclic quadrilateral to prove EFGHEFGH is cyclic we have to prove sum  of one pair of opposite angle is 180^o180  

o

 

In \triangle le△le AEB \rightarrow \angle ABE+ \angle BAE+ \angle AEB=180^{o}AEB→∠ABE+∠BAE+∠AEB=180  

o

 

\angle AEB=180^{o}- \angle ABE- \angle BAE∠AEB=180  

o

−∠ABE−∠BAE

\angle AEB= 180^{o} (1/2 \angle B+ 1/2 \angle A)=180^{o}-1/2 ( \angle B+ \angle A)---(1)∠AEB=180  

o

(1/2∠B+1/2∠A)=180  

o

−1/2(∠B+∠A)−−−(1)

Now lines AHAH and BFBF intersect

So \angle FEH= \angle AEB∠FEH=∠AEB

\angle FEH=180^{o}-1/2 (\angle B+ \angle A)---(2)∠FEH=180  

o

−1/2(∠B+∠A)−−−(2)

Similarly \angle FGH = 180^{o}- \dfrac{1}{2} (\angle C+ \angle D)---(3)∠FGH=180  

o

−  

2

1

​  

(∠C+∠D)−−−(3)

Add (2)(2) & (3)(3) \angle FEH+ \angle FGH =180^{o}- 1/2 (\angle B+ \angle C)+180^{o}-1/2 (\angle A+ \angle D)∠FEH+∠FGH=180  

o

−1/2(∠B+∠C)+180  

o

−1/2(∠A+∠D)

\angle FEH+ \angle FGH = 180^{o}+180^{o}-1/2 (\angle A+ \angle B+ \angle C + \angle D)∠FEH+∠FGH=180  

o

+180  

o

−1/2(∠A+∠B+∠C+∠D)

Since ABCDABCD is quadrilateral  

Sum of angles =360=\angle A + \angle B+ \angle C +\angle D=360=∠A+∠B+∠C+∠D

\angle FEH+ \angle FGH=360- \dfrac{1}{2} (360)=360-180=180^{o}∠FEH+∠FGH=360−  

2

1

​  

(360)=360−180=180  

o

 

\angle FEH+ \angle FGH=180^{o}∠FEH+∠FGH=180  

o

 

Thus EFGHEFGH is cyclic quadrilateral.  

Since sum of one pair of opposite angle is 180^{o}180  

o

Similar questions