Math, asked by Anonymous, 1 year ago

prove that the question in attachment​

Attachments:

Answers

Answered by MяMαgıcıαη
5

solution of your question is In the above image.

Attachments:
Answered by Nereida
4

\huge\star{\underline{\mathfrak{Answer}}}

 \alpha  +   \beta  = 90 {}^{o}

 \beta  = 90 {}^{o}  -  \alpha

LHS=

 \sqrt{ \cos( \alpha ) \csc( \beta ) -  \cos( \alpha )  \sin( \beta )   }

 =  \sqrt{ \cos( \alpha )  \csc( {90}^{o} -  \beta  ) -  \cos( \alpha )   \sin( {90}^{o} -  \beta  ) }

 =  \sqrt{ \cos( \alpha )  \sec( \alpha )  -  \cos( \alpha )  \cos( \alpha ) }

 =  \sqrt{1 -    \cos {}^{2} ( \alpha )   }

 =  \sqrt{ \sin {}^{2} ( \alpha ) }

 =  \sin( \alpha )  = rhs

FORMULAS USED:

  •  \csc(90 {}^{o} - a )  =  \sec(a)
  •  =  \sin(90 {}^{o} - a )  =  \cos(a)
  • cos(a) \times  \sec(a)  = 1
  •  \sin {}^{2} (a)  +  \cos {}^{2} (a) = 1
Similar questions