Math, asked by sheenamehta07, 21 days ago

Prove that :

The question is attached above

It will be really very helpful if you solve this in a rough notebook and share the picture of it​

Attachments:

Answers

Answered by ItzAlluringBabe
103

Answer:

Refer to the image.

The image given above is the answer.

Step-by-step explanation:

HTH!¡! :))

Attachments:
Answered by OoAryanKingoO78
53

\underline{\large \sf{Given-} }

 \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{ \leadsto\displaystyle{\dfrac{1}{1 + x^{a - b}}{1}{1 + x^{b - a}} =1}}

\underline{\large \sf{To \: Prove-} }

1 = 1

\underline{\large \sf{Solution-} }

Consider L.H.S->

\sf \implies{\dfrac{1}{1 + x^{a - b}} + \dfrac{1}{1 + x^{b - a}}}

\sf \implies{\dfrac{1}{1 + \dfrac{x^a}{x^b}} + \dfrac{1}{1 + \dfrac{x^b}{x^a}}}

\sf \implies{\dfrac{1}{\dfrac{x^b + x^a}{x^b}} + \dfrac{1}{\dfrac{x^a + x^b}{x^a}}}

\sf \implies \dfrac{x^b}{x^b + x^a} + \dfrac{x^a}{x^a + x^b}

\ \ \ \ \ \ \ \ \ \ \ \      \dashrightarrow{\underbrace{\boxed{\bf\color{blue}{\dfrac {\cancel{x^b + x^a}}{\cancel{x^a + x^b}} \:   \color{pink}{=} \:  \:  \:  \color{magenta}{1}}}}}

1 = 1

L.H.S = R.H.S

Hence Proved✓

Similar questions