Math, asked by thanks19, 1 year ago

Prove that the ratio of the area's of two similar triangles is equal to the ratio of the squares of their corresponding altitudes.

Answers

Answered by Panzer786
201

Hii friend,

Let ∆ABC and ∆DEF are two similar triangles.

Given :- ∆ABC similar to triangle DEF, AL Perpendicular to BC and DM Perpendicular to EF

Ar(∆ABC)/Ar(∆DEF) = AL²/DM²

Proof :- As we know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.

Therefore,

Ar(∆ABC)/Ar(∆DEF) = AB²/DE² ........(1)

In ∆ALB and ∆DME , we have

Angle ALB = Angle DME = 90°

and, Angle B = Angle E { ∆ABC similar∆DEF)

Therefore,

∆ALB similar to ∆DME { By AA similarity}

=> AB/DE = AL/DM

=> AB²/DE² = AL²/DM² ........(2)

From 1 and 2 we get,

Ar(∆ABC)/Ar(∆DEF) = AL²/DM²..... PROVED.....


HOPE IT WILL HELP YOU...... :-)

thanks19: Hiii re
thanks19: again
Answered by Rememberful
67

\textbf{Answer is in Attachment !}

Attachments:
Similar questions