prove that the ratio of the areas of two similar triangle is equal to the ratio of squares of corresponding sides
Answers
Step 1:
Given Data: Δ ABC ~ Δ PQR
To Prove: (ΔABC) / (ΔPQR) = (\mathrm{AB} / \mathrm{PQ})^{2}=(\mathrm{BC} / \mathrm{QR})^{2}=(\mathrm{CA} / \mathrm{RP})^{2}(AB/PQ)2=(BC/QR)2=(CA/RP)2
Step 2:
Draw AM ⊥ BC, PN ⊥ QR
(ΔABC) / (ΔPQR) = (½ × BC × AM) / (½ × QR × PN)
= BC/QR × AM/PN........................................... [I]
In Δ ABM and Δ PQN,
Step 3:
∠B = ∠Q (Δ ABC ~ Δ PQR)
∠M = ∠N (each 90°)
Step 4:
So, Δ ABM ~ Δ PQN
AM/PN = AB/PQ ... ………………. [ii]
AB/PQ = BC/QR = CA/RP (Δ ABC ~ Δ PQR)..................... [iii]
Step 5:
Therefore Equation (i)
(ΔABC) / (ΔPQR) = BC/QR × AM/PN
= AB/PQ × AB/PQ [From Equation (ii) and Equation (iii)]
=(\mathrm{AB} / \mathrm{PQ})^{2}=(AB/PQ)2
Step 6:
Using Equation (iii)
(ABC) / (PQR) => (\mathrm{AB} / \mathrm{PQ})^{2}=(\mathrm{BC} / \mathrm{QR})^{2}=(\mathrm{CA} / \mathrm{RP})^{2}(AB/PQ)2=(BC/QR)2=(CA/RP)2
Answer:
HENCE PROVED............