Math, asked by tiggaregina281, 5 months ago

prove that the ratio of the areas of two similar triangle is equal to the square of the ratio of their corresponde sides ​

Answers

Answered by ashalebaka
0

hope it helps you

thank you

Attachments:
Answered by Ataraxia
8

GIVEN :-

\sf\triangle ABC \sim \triangle PQR

TO PROVE :-

\sf\dfrac {Area \ of \ \triangle ABC }{Area \ of \ \triangle PQR}=\dfrac{AB^2}{PQ^2}= \dfrac{BC^2}{QR^2}=\dfrac{AC^2}{PR^2}

SOLUTION :-

\longrightarrow\sf \dfrac{Area \ of \ \triangle ABC}{Area \ of \ \triangle PQR}= \dfrac{\dfrac{1}{2}\times AD \times BC}{\dfrac{1}{2}\times PS \times QR} \\\\\longrightarrow\sf \dfrac{Area \ of \ \triangle ABC}{Area \ of \ \triangle PQR}= \dfrac{AD}{PS} \times \dfrac{BC}{QR} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ........................(1)

We know ,

\sf\triangle ABC \sim \triangle PQR

\longrightarrow\sf \dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{AC}{PR} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ........................(2)

Consider ΔABD and ΔPQS,

∠B = ∠Q   ( ∵ ΔABC ~ ΔPQR )

∠ADB = ∠PSQ ( 90° each )

∴ ΔABD ~  ΔPQS ( AA similarity )

\sf\therefore \dfrac{AB}{PQ}=\dfrac{BD}{QS}=\dfrac{AD}{PS}

From (2) , we have

\sf\dfrac{AB}{PQ}= \dfrac{BC}{QR}= \dfrac{AC}{PR}=\dfrac{AD}{PS}

Substitute in equation (1),

\longrightarrow\sf \dfrac{Area \ of \ \triangle ABC}{Area \ of \ \triangle PQR}= \dfrac{AB}{PQ}\times \dfrac{AB}{PQ}= \dfrac{BC}{QR}\times \dfrac{BC}{QR}=\dfrac{AC}{PR}\times \dfrac{AC}{PR} \\\\\\\longrightarrow\bf  \dfrac{Area \ of \ \triangle ABC}{Area \ of \ \triangle PQR}= \dfrac{AB^2}{PQ^2}=\dfrac{BC^2}{QR^2}=\dfrac{AC^2}{PR^2}

Hence proved .

Attachments:
Similar questions