Math, asked by Manishpaul, 1 year ago

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Answers

Answered by MANKOTIA
38
please mark as brainliest answer
Attachments:

Supersiva120th: Thanks bud!
Answered by hotelcalifornia
4

Answer:

Hence proved.

To Prove:

$(\Delta \mathrm{ABC}) /(\Delta \mathrm{PQR})=(\mathrm{AB} / \mathrm{PQ})^{2}=(\mathrm{BC} / \mathrm{QR})^{2}=(\mathrm{CA} / \mathrm{RP})^{2}$

Step-by-step explanation:

Step 1:

Given:

$\Delta \mathbf{A B C} \sim \Delta \mathbf{P Q R}$

Construction: Draw $\mathrm{AM} \perp \mathrm{BC}, \mathrm{PN} \perp \mathrm{QR}$

Step 2:

$(\Delta \mathrm{ABC}) /(\Delta \mathrm{PQR})=(1 / 2 \times \mathrm{BC} \times \mathrm{AM}) /(1 / 2 \times \mathrm{QR} \times \mathrm{PN})$

$=\mathrm{BC} / \mathrm{QR} \times \mathrm{AM} / \mathrm{PN}$..........[i]

Step 3:

In \Delta ABM \quad and \quad \Delta PQN,

$\angle \mathrm{B}=\angle \mathrm{Q}(\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$$\angle \mathrm{M}=\angle \mathrm{N}\left(\text { each } 90^{\circ}\right)$

Step 4:

So, $\Delta \mathrm{ABM} \sim \Delta \mathrm{PQN}$ (AA similarity criterion)

Therefore, AM/PN = AB/PQ ............................ [ii]

But,

$\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}=\mathrm{CA} / \mathrm{RP}(\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$ .......[iii]

Step 5:

Hence, from (i)

$(\Delta \mathrm{ABC}) /(\Delta \mathrm{PQR})=\mathrm{BC} / \mathrm{QR} \times \mathrm{AM} / \mathrm{PN}$

$=\mathrm{AB} / \mathrm{PQ} \times \mathrm{AB} / \mathrm{PQ}$

[From ii and iii]

$=(\mathrm{AB} / \mathrm{PQ})^{2}$

Step 6:

Using (iii)

$(\Delta \mathrm{ABC}) / \mathrm{r}(\Delta \mathrm{PQR})=(\mathrm{AB} / \mathrm{PQ})^{2}=(\mathrm{BC} / \mathrm{QR})^{2}=(\mathrm{CA} / \mathrm{RP})^{2}$

Hence it is proved

Attachments:
Similar questions