Prove that the relative error of a product of three nonzero numbers does not exceed.the sum of the relative errors of the given numbers
Answers
Answer:
E/B < E₂/B₂ + E₁/B₁ + B₃/E₃
Step-by-step explanation:
Let say three numbers are
A₁ , A₂ , A₃
There closet number B₁ , B₂ , B₃ with Error E₁ , E₂ , E₃ respectively
B₁ * B₂ * B₃ = B
A₁ * A₂ * A₃ = B₁ * B₂ * B₃ + E
A₁ * A₂ * A₃ = (B₁ + E₁)(B₂ + E₂)(B₃ + E₃)
=> A₁ * A₂ * A₃ = (B₁ * B₂ + B₁E₂ + B₂*E₁ + E₁E₂)(B₃ + E₃)
=> A₁ * A₂ * A₃ = B₁ * B₂*B₃ + B₁B₃E₂ + B₂*B₃E₁ + E₁E₂B₃ + B₁ * B₂E₃ + B₁E₂E₃ + B₂*E₁E₃ + E₁E₂E₃
=> A₁ * A₂ * A₃ - B₁ * B₂*B₃ = B₁B₃E₂ + B₂*B₃E₁ + E₁E₂B₃ + B₁E₂E₃ + B₂*E₁E₃ + E₁E₂E₃
=> E = B₁B₃E₂ + B₂*B₃E₁ + B₁ * B₂E₃ + E₁E₂B₃ + B₁E₂E₃ + B₂*E₁E₃ + E₁E₂E₃
Diving both sides by B₁ * B₂ * B₃ or B
=> E/B = E₂/B₂ + E₁/B₁ + B₃/E₃ + E₁E₂/B₁B₂ + E₂E₃/B₂B₃ + E₁E₃/B₁B₃ + E₁E₂E₃/B₁B₂B₃
x = E₁E₂/B₁B₂ + E₂E₃/B₂B₃ + E₁E₃/B₁B₃ + E₁E₂E₃/B₁B₂B₃
=> E/B = E₂/B₂ + E₁/B₁ + B₃/E₃ + x
x is non zero as numbers are non zero
=> E/B < E₂/B₂ + E₁/B₁ + B₃/E₃
relative error of a product of numbers < the sum of the relative errors of the given numbers