Prove that the root of unitary and an orthogonal matrix have unit modulus
Answers
Consider an example:
A=[cosθsinθ−sinθcosθ]A=[cosθ−sinθsinθcosθ]
The eigen value of A are found by solving D=|A−λI2|=(cosθ−λ)2+sin2θ=0D=|A−λI2|=(cosθ−λ)2+sin2θ=0
Giving eigen values λ=cosθ+isinθ=eiθλ∗=cosθ−iIsinθ=e−iθλ=cosθ+isinθ=eiθλ∗=cosθ−iIsinθ=e−iθ
The modules of λλ and λ∗λ∗ is 1.
b) If A is unitary the A∗A=IA∗A=I
Thus if Ax=λxAx=λx then x∗A∗=λ∗x∗x∗A∗=λ∗x∗
Hence x∗x=x∗A∗A∗x=X∗Xx∗xx∗x=x∗A∗A∗x=X∗Xx∗x
Since x∗x≠0x∗x≠0 we obtain x∗λ=1x∗λ=1
Hence |λ|=1
Step-by-step explanation:
know that a unitary matrix can be defined as a square complex matrix A, such that
AA*=A*A=I
where A∗ is the conjugate transpose of A, and I is the identity matrix. Furthermore, for a square matrix A, the eigenvalue equation is expressed by
Av=λv
If I use the relationship uv=v*u and take the conjugate transpose of this equation then
v*A*=λ*v*