Math, asked by Chughprarthana1442, 11 months ago

Prove that the segment joining the midpoints of any two sides of a triangle, is parallel to the third side and is equal to half of the length of the third side.

Answers

Answered by swaraj3013
2

Given : 

A triangle ABC,E and F are mid points of side AB and AC respectively.

To prove :

line joining the mid points is parellel to the third side => EF || BC

and,

line joinining the mid points = half of third line  

=> EF = 1/2 BC

Construction :

Through C, draw a line parellel to BA to meet EF produced at D.

 statements                                                                 reasons

In triangle AEF and triangle CDF

1. AF = CF                                                1. F is mid point of AC(given)

2. angle AFE =  angle CFD                      2. Vertically opposite angles

3.angle EAF = angle DCF                        3.Alternate angles, BA || CD(by                                                                            construction) and AC is a                                                                                 transversa.

4.triangle AEF congruent to                    4. ASA rule of congruency

triangle CDF                                             

5.EF = FD and AE = CD                         5. c.p.c.t.

6.AE = BE                                               6. E is the mid point of AB (given)

7.BE = CD                                              7. From 5 and 6

8.EBCD is a parallelogram                     8.BA || CD (construction)

                                                                   and BE = CD (given)

9.EF || BC and ED = BC                         9.Since EBCD is a parallelogram

10. EF = 1/2 ED                                     10.Since EF = FD,from 5

11.EF = 1/2 BC                                      11.Since ED = BC , from 9

Hence, EF || BC and EF = 1/2 BC.

Follow me

Similar questions