Prove that the square of any positive integer id in the form of 4q and 4q + 1 for some integer q
Answers
Answered by
32
✴✴Hey friends!!✴✴
------------------------------------------------------------
✴✴ Here is your answer↓⬇⏬⤵
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
=> Let a be the any positive integer.
:-) then b = 4.
By Euclid's Division lemma:-)
↪➡ a= bs+r. [ s = Quotient].
↪➡ 0≤r<b.
=> 0≤r<4.
:-( r= 0,1,2,3).
⏩▶ Taking r = 0.
=> a= bs+r.
↪➡ a= 4s+0.
↪➡ a=4s.
↪➡a=(4s)².
↪➡ a=16s².
↪➡ a= 4(4s)².
↪➡a= 4q. [ where q = 4s²].
Now,
⏩▶ Taking r= 1.
=> a= bs+r.
↪➡ a= 4s+1.
↪➡ a= (4s+1)².
↪➡ a= 16s²+ 8s+1.
↪➡ a= 4(4s²+2s)+1.
↪➡ a= 4q+1. [ where q= 4s²+2s].
✴✴ Hence, it is proved that 4q and 4q+1 is the any positive integers for some integers q.✴✴✔✔.
✴✴ Thanks ✴✴.
☺☺☺ hope it is helpful for you ✌✌✌.
------------------------------------------------------------
✴✴ Here is your answer↓⬇⏬⤵
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
=> Let a be the any positive integer.
:-) then b = 4.
By Euclid's Division lemma:-)
↪➡ a= bs+r. [ s = Quotient].
↪➡ 0≤r<b.
=> 0≤r<4.
:-( r= 0,1,2,3).
⏩▶ Taking r = 0.
=> a= bs+r.
↪➡ a= 4s+0.
↪➡ a=4s.
↪➡a=(4s)².
↪➡ a=16s².
↪➡ a= 4(4s)².
↪➡a= 4q. [ where q = 4s²].
Now,
⏩▶ Taking r= 1.
=> a= bs+r.
↪➡ a= 4s+1.
↪➡ a= (4s+1)².
↪➡ a= 16s²+ 8s+1.
↪➡ a= 4(4s²+2s)+1.
↪➡ a= 4q+1. [ where q= 4s²+2s].
✴✴ Hence, it is proved that 4q and 4q+1 is the any positive integers for some integers q.✴✴✔✔.
✴✴ Thanks ✴✴.
☺☺☺ hope it is helpful for you ✌✌✌.
jnsgarima18:
ya tnx
Similar questions
Hindi,
7 months ago
English,
7 months ago
Science,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago