Prove that the square of any positive integer is in the form of 3M or 3M + 1 from some integer m
Answers
Answered by
1
Answer:
Step-by-step explanation:
By Euclid's division lemma, a=bq+r, 0≤r<b
Let,
a=any positive integer
b=3 {0≤r<3}
r=0, 1, 2
Case 1 (r=0):-
a=bq+r
a=3q+0
(a)²=(3q)²
a²=9q²
a²=3(3q²)
a²=3m {m=3q²}
Case 2 (r=1):-
a=bq+r
a=3q+1
(a)²=(3q+1)²
a²=9q²+6q+1
a²=3(3q²+2q)+1
a²=3m+1 {m=3q²+2q}
Case 3 (r=2):-
a=bq+r
a+3q+2
(a)²=(3q+2)²
a²=9q²+12q+4
a²=3(3q²+4q+1)+1
a²=3m+1 {m=3q²+4q+1}
∴ By Euclid's division lemma, the square of any positive integer is in the form of 3m or 3m+1.
Similar questions