Math, asked by parvamalla123, 4 months ago

prove that the straight line to origin to the point of intersection of lin x÷a+y÷b=1 and the curve x^2+y^2=c^2 are at right angle if 1÷a^2+1÷b^2=2÷c^2​

Answers

Answered by yuvrajIsingh
0

Answer:

Step-by-step explanation:

(x−h)  

2

+(y−k)  

2

=c  

2

 

kx+hy=2hk

The equation of pair straight line joining the origin is find by method of homogenisation. We make the coefficient of constant term of straight line 1 and put it the equation of the curve so that degree of each term of the curve become 2

1=  

2hk

kx+hy

​  

=  

2h

x

​  

+  

2k

y

​  

 

x  

2

−2hx+h  

2

+y  

2

−2ky+k  

2

−c  

2

=0

x  

2

+y  

2

−2hx(1)−2ky(1)+(h  

2

+k  

2

−c  

2

)(1)  

2

=0

x  

2

+y  

2

−2hx(  

2h

x

​  

+  

2k

y

​  

)−2ky(  

2h

x

​  

+  

2k

y

​  

)+(h  

2

+k  

2

−c  

2

)(  

2h

x

​  

+  

2k

y

​  

)  

2

=0

(1−1+  

4h  

2

 

h  

2

+k  

2

−c  

2

 

​  

)x  

2

+(1−1+  

4k  

2

 

h  

2

+k  

2

−c  

2

 

​  

)y  

2

−(  

k

h

​  

+  

h

k

​  

−  

2kh

h  

2

+k  

2

−c  

2

 

​  

)xy=0

(  

4h  

2

 

h  

2

+k  

2

−c  

2

 

​  

)x  

2

+(  

4k  

2

 

h  

2

+k  

2

−c  

2

 

​  

)−(  

k

h

​  

+  

h

k

​  

−  

2kh

h  

2

+k  

2

−c  

2

 

​  

)xy=0

Lines are prerpendicular if a+b=0

⇒  

4h  

2

 

h  

2

+k  

2

−c  

2

 

​  

+  

4k  

2

 

h  

2

+k  

2

−c  

2

 

​  

=0

(h  

2

+k  

2

−c  

2

)(k  

2

+h  

2

)=0

⇒h  

2

+k  

2

−c  

2

=0

h  

2

+k  

2

=c  

2

 

Hence proved

Similar questions