Math, asked by sweetcandy00, 3 months ago

prove that the sum of a pair of opposite angles of a quadrilateral is 180 degree, the quadrilateral is cyclic​

Answers

Answered by XxxRAJxxX
9

 \large{\boxed{\red{\boxed{\underline{\green{\mathfrak{Given :-}}}}}}}

\bold{\red{\textsf{ABCD is a cyclic quadrilateral, With Centre O.}}}

 \large{\boxed{\red{\boxed{\underline{\green{\mathfrak{To \: Prove :-}}}}}}}

 \bold{\red{\textsf{Sum of pair of Opposite angles is 180°}}}

 \bold{\mathsf{i.e, \: \: • \angle BAD + \angle BCD = 180\degree}}

 \bold{\mathsf{\: \: \: \: \: \: \: \: • \angle ABC + \angle ADC = 180\degree}}

 \large{\boxed{\red{\boxed{\underline{\green{\mathfrak{Proof :-}}}}}}}

 \boxed{\textrm{\pink{Hence, Angles in same segment are equal}}}

 \textrm{\pink{So,}}

\longrightarrow \textsf{\purple{In Chord AB,}}

 \boxed{\mathsf{\blue{\angle 5 = \angle 8 \: \: ....(1)}}}

\longrightarrow \textsf{\purple{In Chord BC,}}

 \boxed{\mathsf{\blue{\angle 1 = \angle 6 \: \: ....(2)}}}

\longrightarrow \textsf{\purple{In Chord CD,}}

\boxed{\mathsf{\blue{\angle 2 = \angle 4 \: \: ....(3)}}}

\longrightarrow \textsf{\purple{In Chord AD,}}

 \boxed{\mathsf{\blue{\angle 7 = \angle 3 \: \: ....(4)}}}

 \textrm{\pink{By Angle Sum Property of Quadrilateral}}

 \longrightarrow{\boxed{\mathsf{\purple{\angle A + \angle B + \angle C + \angle D = 360\degree}}}}

\therefore{\mathsf{\blue{\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 7}}}

 \sf \blue{+ \angle 8 + \angle 5 + \angle 6 = 360\degree}

\implies \mathsf{\blue{(\angle 1 + \angle 2 + \angle 7 + \angle 8) + }}

 \sf \blue{(\angle 3 + \angle 4 + \angle 5 + \angle 6) = 360\degree}

 \longrightarrow{\pink{\textrm{From (1), (2), (3) and (4),}}}\pink{\textrm{We get,}}

 \therefore \mathsf{\purple{(\angle 1 + \angle 2 + \angle 7 + \angle 8) +}}

 \sf \purple{(\angle 7 + \angle 2 + \angle 8 + \angle 1) = 360\degree}

 \implies \mathsf{\blue{2(\angle 1 + \angle 2 + \angle 7 + \angle 8) = 360\degree}}

 \implies \sf \blue{\angle 1 + \angle 2 + \angle 7 + \angle 8 = \cancel{\frac{360\degree}{2}}}

 \implies \sf \blue{\angle 1 + \angle 2 + \angle 7 + \angle 8 = 180\degree}

 \implies \sf \blue{(\angle 1 + \angle 2) + (\angle 7 + \angle 8) = 180\degree}

\pink{\mathsf{Hence, \: \angle 1 + \angle 2 = \angle BAD}}

\pink{\mathsf{And, \: \angle 7 + \angle 8 = \angle BCD}}

 \pink{\textrm{Therefore,}}

 \boxed{\purple{\mathsf{ \angle BAD + \angle BCD = 180\degree}}}

 \pink{\textrm{Similarly,}}

 \boxed{\purple{\mathsf{ \angle ABC + \angle ADC = 180\degree}}}

 \green{\underline{\texttt{Hence, Proved.}}}

Attachments:

XxxRAJxxX: The another theoram is the opppsite of this theoram. Both are based on the same principal.
sweetcandy00: ya
sweetcandy00: so there Answers are Same
XxxRAJxxX: yes
sweetcandy00: i.e. which u posted
XxxRAJxxX: yes
sweetcandy00: ok dear..thank uuhh so much :)
XxxRAJxxX: welcome
itzAVINASH: maja aa gya bhaiya
Anonymous: rainbowish answer!
Similar questions