Prove that the sum of all angles of a quadrilateral is 360 degree
Answers
Answered by
5
Prove that the sum of all the four angles of a quadrilateral is 360°.
Proof: Let ABCD be a quadrilateral. Join AC.
Clearly, ∠1 + ∠2 = ∠A ...... (i)
And, ∠3 + ∠4 = ∠C ...... (ii)
We know that the sum of the angles of a triangle is 180°.
Therefore, from ∆ABC, we have
∠2 + ∠4 + ∠B = 180° (Angle sum property of triangle)
From ∆ACD, we have
∠1 + ∠3 + ∠D = 180° (Angle sum property of triangle)
Adding the angles on either side, we get;
∠2 + ∠4 + ∠B + ∠1 + ∠3 + ∠D = 360°
⇒ (∠1 + ∠2) + ∠B + (∠3 + ∠4) + ∠D = 360°
⇒ ∠A + ∠B + ∠C + ∠D = 360° [using (i) and (ii)].
Hence, the sum of all the four angles of a quadrilateral is 360°.
CHECK OUT THE PICTURE.
MARK IT AS BRAINLIEST.
Proof: Let ABCD be a quadrilateral. Join AC.
Clearly, ∠1 + ∠2 = ∠A ...... (i)
And, ∠3 + ∠4 = ∠C ...... (ii)
We know that the sum of the angles of a triangle is 180°.
Therefore, from ∆ABC, we have
∠2 + ∠4 + ∠B = 180° (Angle sum property of triangle)
From ∆ACD, we have
∠1 + ∠3 + ∠D = 180° (Angle sum property of triangle)
Adding the angles on either side, we get;
∠2 + ∠4 + ∠B + ∠1 + ∠3 + ∠D = 360°
⇒ (∠1 + ∠2) + ∠B + (∠3 + ∠4) + ∠D = 360°
⇒ ∠A + ∠B + ∠C + ∠D = 360° [using (i) and (ii)].
Hence, the sum of all the four angles of a quadrilateral is 360°.
CHECK OUT THE PICTURE.
MARK IT AS BRAINLIEST.
Attachments:
Answered by
2
let us consider a quadrilateral ABCD ,
in a quadrilateral we have ,
angle A = 90 degree ( perpendicular )
similarly all angles B,C,D. ARE 90 degree .
hence, we total all angles we get 90+90+90+90 which is equal to 360 degree
Similar questions