Math, asked by Jeeyapegu, 1 year ago

prove that the sum of all angles of a triangle is 180°.

Answers

Answered by RabbitPanda
4

To prove: <A + <B + <C = 180°


Draw line through B parallel to AC Given a line and a pt. not on and label two points D and E, one the line, exactly one and only

on each side of B one line can be drawn through the point parallel to the line.



<A = <ABD

[ Alternate interior angles cut by Transversal AB cutting parallel lines AC and DE must be equal.]


<C = <CBE

[ alternate interior angles formed by Transversal CB lines AC and DE must be equal.]


<ABD + <B + <CBE = 180°

[ Their sum is a straight angle.]


<A + <B + <C = 180°

[ Equals may be substituted for equals.]



Hope it helps u


@skb

Attachments:

Jeeyapegu: thanks
RabbitPanda: Wlcm
Jeeyapegu: I don't ask you
RabbitPanda: Wht do u mean
Answered by Mercidez
15
Let \: \: PQR \: \: be \: \: a \: \: triangle.

 \frac{To \: \: Prove : - \: ∠P \: + \:∠Q \: + \: ∠R = 180°}{} \\

 \frac{Const : - Through \: \: P \: \: draw \: \: CD ||QR}{} \\

 \frac{Proof : - }{} \\

Since \: \: CD || QR \: \: and \: \: PQ \: \: is \: \: the \: \: transversal. \\ \\ ∠ 1 = ∠ 4 \: \: (alternate \: \: angles)

Again ,\: \: CD || QR \: \: and \: \: PR \: \: is \: \: the \: \: transversal. \\ \\ ∠ 3 = ∠ 5 \: \: \: (alternate \: \: angles) \\

Adding \: ∠2 \: on \: \: the \: \: both \: \: sides \\ \\ ∠ 1 + ∠2 + ∠ 3 = ∠4 + \:∠2+ \: ∠ 5

 = &gt;∠ 4 +∠ 2+∠ 5 = 180° \: (linear \: \: pair) \\ \\ = &gt; ∠1 + ∠2 +∠ 3 = 180° \\ \\ = &gt;∠ P +∠Q +∠ R = 180° \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \frac{Proved}{ \frac{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{} } \\
Attachments:

Jeeyapegu: thanks
Similar questions