Prove that the sum of all angles of quadrilateral is 360⁰
Answers
Answer:
Hence Proved!!!
Step-by-step explanation:
Diagram:
- Refers to attachment.
Given:
- ABCD is a quadrilateral.
To Prove:
- ∠A + ∠B + ∠C + ∠D = 360º
Construction:
- Join BD.
Proof:
In ΔABD, we have
⇒ ∠A + ∠ABD + ∠ADB = 180º ...... (1) [Angle sum property]
Similarly, In ΔBCD,
⇒ ∠DBC + ∠C + ∠BDC = 180º ...... (2) [Angle sum property]
Now, add equation (1) and equation (2), we get
⇒ ∠A + ∠ABD + ∠ADB + ∠DBC + ∠C + ∠BDC = 180º + 180º
⇒ ∠A + ∠ABD + ∠DBC + ∠C + ∠ADB + ∠BDC = 360º
⇒ ∠A + ∠B + ∠C + ∠D = 360º
Hence Proved!!!
#answerwithquality
#BAL
Statement :
sum of the angles of quadrilateral is 360°
To Prove :
∠A + ∠B + ∠C + ∠D = 360°
Proof :
In ∆ ABC , m∠4 + m∠5+m∠6 = 180°
[ using angle a property of a triangle]
Also , in ∆ ADC , m∠1 + m∠2+m∠3= 180°
Sum of the measures of ∠A, ∠B , ∠C and ∠D of a quadrilateral
m∠4 + m∠5+ m∠6 + m∠1 + m∠2 +m∠3 = 180°+ 180°
→ ∠A + ∠B + ∠C + ∠D = 360°
Thus , sum of measure of four angles of quadrilateral is 360°.