Prove that the sum of all minterms of a boolean function of n variables is 1
Answers
Answered by
0
I used ' for not and variables a, b, c.
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c') =
ab+ab'+ a'b+a'b'= a(b+b')+ a'(b+b')
a+ a' = 1 (x+ x' =1).
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c') =
ab+ab'+ a'b+a'b'= a(b+b')+ a'(b+b')
a+ a' = 1 (x+ x' =1).
Similar questions