Prove that the sum of all minterms of a Boolean function of n variable is one
Answers
Answered by
0
I used ' for not and variables a, b, c
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c')=
ab+ab'+ a'b+a'b'=
a(b+b')+ a'(b+b')=
a+ a' = 1
We know that x+ x' =1
src: brainly
S = abc+ abc'+ ab'c+ ab'c'+ a'bc+ a'bc'+ a'b'c+ a'b'c' =
ab(c+c') + ab'(c+c')+ a'b(c+c')+ a'b'(c+c')=
ab+ab'+ a'b+a'b'=
a(b+b')+ a'(b+b')=
a+ a' = 1
We know that x+ x' =1
src: brainly
Similar questions
Business Studies,
7 months ago
Social Sciences,
7 months ago
Math,
7 months ago
English,
1 year ago
History,
1 year ago