prove that the sum of all the angles of a quadrilateral is 360°
Answers
Answered by
23
Here is your answer
Given:-
Quadrilateral PQRS.
Join QS.
To prove:-
∠P + ∠Q + ∠R + ∠S = 360º
Proof:-
Consider triangle PQS, we have,
=> ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]
Similarly, in triangle QRS, we have,
=>∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]
On adding (1) and (2), we get
∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º
=>∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º
⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]
Given:-
Quadrilateral PQRS.
Join QS.
To prove:-
∠P + ∠Q + ∠R + ∠S = 360º
Proof:-
Consider triangle PQS, we have,
=> ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]
Similarly, in triangle QRS, we have,
=>∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]
On adding (1) and (2), we get
∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º
=>∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º
⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]
Attachments:
Swarup1998:
Great answer! :)
Answered by
10
Hope. useful for you
Attachments:
Similar questions