Math, asked by babud7266, 9 months ago

prove that the sum of any number of the arithmetic sequence 16,24,32 ect starting from the first add to 9 gives a perfect square ​

Answers

Answered by Unni007
4

Given,

A.P = 16,24,32,...

Sum of n terms can be determined by the equation,

\boxed{\bold{S_n = \frac{n}{2}[2a+(n-1)d]}}

Here,

  • a = 16
  • d = 8

\implies\bold{S_n = \frac{n}{2}[(2\times16)+(n-1)8]}

\implies\bold{S_n = \frac{n}{2}[32+8n-8]}

\implies\bold{S_n = \frac{n}{2}[8n+24]}

\implies\bold{S_n = n(4n+12)}

\implies\bold{S_n = 4n^2+12n}

Adding 9 to both the sides,

\implies\bold{S_n+9 = 4n^2+12n+9}

\implies\bold{S_n+9 = (2n)^2+(2\times2n\times3)+(3)^2}

\implies\bold{S_n+9 = (2n+3)^2}

Hence, \bold{S_n+9}  is a perfect square

Hence Proved........

Similar questions