prove that the sum of either pair of of opposite angles of a cyclic quadrilateral is 180 degree
Answers
Answered by
2
Step-by-step explanation:
Given:ABCD is a cyclic quad. of a circle with centre at o
To prove: BAD+ BCD=180°
ABC+ ADC=180°
chord AB
angle 5 =angle 8(angle in same segment are equal)
chord BC
angle 1 =angle 6(same)
chord CD
angle 2=angle 4(same)
chord AD
angle 7=angle 3(same)
by angle sum property of quad.
A+B+C+D=360°
angle 1+angle 2 +angle 3 +angle 4+ angle 5+ angle 6+ angle 7 +angle 8=360°
(angle1+ angle2+ angle7+ angle8)+(angle3+ angle4+ angle5+ angle6)=360°
2(angle1+ angle2+ angle7+ angle8)=360°
angle1+ angle2+ angle7+ angle8=360°/2
(angle1+ angle2)+(angle 7+ angle8)=180°
BAD+ADC=180°
Similarly,
ABC+ADC=180°
Hence proved.
Attachments:
Similar questions