Math, asked by kikimAnushka, 3 days ago

Prove that the sum of four angles of a quadrilateral ABCD is 360degree.
[Hint: Draw diagonal BD by joining the points B and D and use angle sum property of a triangle for two triangles formed.]​

Answers

Answered by mdzaidraza2006786
1

Consider a quad quadrilateral ABCD.

Join QS.

To\quad prove:∠A+∠B+∠C+∠D=360º

Proof:Consider triangle ABD,

we have,∠A+∠ABD+∠ADB=180º⟹(1)[Using Angle sum property of Triangle]

Similarly,triangle BCD,we have,∠DBC+∠C+∠BDC=180º⟹(2)[Using Angle sum property of Triangle]

On adding (1) and (2),we get∠A+∠ABD+∠ADB+∠DBC+∠C+∠BDC=180º+180º

∠A+∠B+∠C+∠D=360º

Answered by Moonlight568
1

Consider a quad quadrilateral ABCD.

Join QS.

To\quad prove:∠A+∠B+∠C+∠D=360º

Proof:Consider triangle ABD,

we have,∠A+∠ABD+∠ADB=180º⟹(1)[Using Angle sum property of Triangle]

Similarly,triangle BCD,we have,∠DBC+∠C+∠BDC=180º⟹(2)[Using Angle sum property of Triangle]

On adding (1) and (2),we get∠A+∠ABD+∠ADB+∠DBC+∠C+∠BDC=180º+180º

∠A+∠B+∠C+∠D=360º

Similar questions