Math, asked by dangdivjotsingh, 9 months ago

prove that the sum of sides of traingle is greater than sum of 3 medians​

Answers

Answered by SaI20065
6

\mathfrak{\huge{\blue{\underline{\underline{Answer:-}}}}}

In the triangle ABC, D,E and F are the midpoints of

sides BC,CA and AB respectively.

We know that the sum of two sides of a triangle is greater than twice the median bisecting the third side,

Hence in triangle ABD, AD is a median

AB+AC>2(AD)

\mathfrak{\huge{\blue{\underline{\underline{similarly:-}}}}}

BC+AC>2(CF)

BC+AB>2(BE)

\mathfrak{\huge{\blue{\underline{\underline{On   adding:-}}}}}

(AB+AC)+(BC+AC)+(BC+AB)>2AD+2CF+2BE

2(AB+BC+AC)>2(AD+BE+CF)

⇒∴AB+BC+AC>AD+BE+CF

Then perimeter of a triangle is greater than sum of its three medians

Similar questions