prove that the sum of squares of daigonals of a parallelogram is equal to the sum of the squares of its sides
Answers
In parallelogram ABCD,
AB=CD and BC=AD
Draw perpendiculars from C and D on AB as shown.
In right angled △AEC,
⇒ (AC) 2 =(AE) 2 +(CE) 2
[ By Pythagoras theorem ]
⇒ (AC) 2 =(AB+BE) 2 +(CE) 2
⇒ (AC) 2 =(AB) 2 +(BE) 2 +2×AB×BE+(CE) 2
----- ( 1 )
From the figure CD=EF
[ Since CDFE is a rectangle ]
But CD=AB
⇒ AB=CD=EF
Also CE=DF
[ Distance between two parallel lines]
⇒ △AFD≅△BEC [ RHS congruence rule ]
⇒ AF=BE [ CPCT ]
Considering right angled △DFB
⇒ (BD) 2 =(BF) 2 +(DF) 2
[ By Pythagoras theorem ]
⇒ (BD) 2
=(EF−BE) 2 +(CE) 2
[ Since DF=CE ]
⇒ (BD) 2 =(AB−BE) 2 +(CE) 2
[ Since EF=AB ]
⇒ (BD) 2 =(AB) 2 +(BE) 2 −2×AB×BE+(CE) 2
----- ( 2 )
(AC) 2 +(BD) =(AB) 2 +(BE) 2 +2×AB×BE+(CE) 2(AB)2 +(BE) 2 −2×AB×BE+(CE) 2
⇒ (AC) 2 +(BD) 2 =2(AB) 2 +2(BE) 2 +2(CE) 2
⇒ (AC) 2 +(BD) 2 =2(AB) 2 +2[(BE) 2 +(CE) 2 ] ---- ( 3 )
In right angled △BEC,
⇒ (BC) 2 =(BE) 2 +(CE) 2
[ By Pythagoras theorem ]
Hence equation ( 3 ) becomes,
⇒ (AC) 2 +(BD) 2 =2(AB) 2 +2(BC) 2
⇒ (AC) 2 +(BD) 2 =(AB) 2 +(AB) 2 +(BC) 2 +(BC) 2
∴ (AC) 2 +(BD) 2 =(AB) 2 +(BC) 2 +(CD) 2 +(AD) 2
∴ The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.