Math, asked by tyagicherry, 5 months ago

Prove that the sum of squares of sides of a parallelogram is equal to the sum of the squares of it's diagonals​

Answers

Answered by Anonymous
27

Question:-

  • Prove that the sum of squares of sides of a parallelogram is equal to the sum of the squares of it's diagonals

Proof:-

In parallelogram ABCD, AB = CD, BC = AD

Construction:-

Draw perpendiculars from C and D on AB as shown.

Now:-

In right angled ΔAEC, AC² = AE² + CE² [By Pythagoras theorem]

⇒ AC² = (AB + BE)² + CE²

⇒ AC² = AB² + BE² + 2 AB × BE + CE²  ---(i)

From the figure CD = EF (Since CDFE is a rectangle)

But CD= AB

⇒ AB = CD = EF

Also CE = DF (Distance between two parallel lines)

ΔAFD ≅ ΔBEC (RHS congruence rule)

⇒ AF = BE

Consider right angled ΔDFB

BD² = BF² + DF² [By Pythagoras theorem]

       = (EF – BE)2 + CE²  [Since DF = CE]

       = (AB – BE)² + CE² [Since EF = AB]

⇒ BD² = AB² + BE² – 2 AB × BE + CE²  ----(ii)

Add equation (1) and (2), we get

=>AC² + BD² = (AB² + BE² + 2 AB × BE + CE²) + (AB² + BE² – 2 AB × BE + CE²)

                = 2AB² + 2BE² + 2CE²

=>AC2 + BD2 = 2AB² + 2(BE² + CE²)  ------(iii)

From right angled ΔBEC:-

BC² = BE² + CE² [By Pythagoras theorem]

Hence equation (3) becomes,

AC² + BD² = 2AB² + 2BC²

                          = AB² + AB² + BC² + BC²

                           = AB² + CD² + BC² + AD²

∴   AC² + BD² = AB² + BC² + CD² + AD²

Thus the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

  • Hence proved

Hope it helps you ✔️

Attachments:
Answered by MrAnonymous412
45

\color{grey}\underline{ \rm \large \:  \: Statement :- }

  • The sum of squares of sides of a parallelogram is equal to the sum of the squares of it's diagonals.

\color{grey}\underline{ \rm \large \:  \: Given :- }

  • ABCD is a parallelogram .

\color{grey}\underline{ \rm \large \:  \: To \:  prove :- }

 \:  \:  \:  \:  \:  \:  \sf \star \:  \: Sum  \: of  \: squares  \: of  \: diagonals  \: =  \: sum  \: of \:  squares \:  of  \: its  \: sides

 \:  \:  \:  \:  \:  \:  \sf \star \:  \: AC² + BD² = AB² + BC² + CD² + DA²

 \color{grey} \underline{ \rm \large \:  \: Construction :- }

  • Draw AX is perpendicular to CD and BY is is extended to Y.

 \color{grey} \underline{ \rm \large \:  \: Proof :- }

In Right ∆ AXC ,

Applying Pythagoras theorem,

AC² = AX² + CX² ............................ ( 1 )

In Right ∆ BYD ,

Applying Pythagoras theorem,

BD² = BY² + DY² ............................ ( 2 )

Hence, The equations are

AC² = AX² + CX² ............................ ( 1 )

BD² = BY² + DY² ............................ ( 2 )

From equation 2 ,

BD² = BY² + DY²

Now, putting DY = CD + CY ,

  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: BD  ^{2}   = BY ^{2}  + (CD + CY )^{2}  \\

  \\ \:  \:  \:\:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :   \implies\:  \:  \:  \:  \sf \: BD  ^{2}   = BY ^{2}  + CY² + CD² + 2CD * CY\\

  \\ \: \:  \:  \:  \:  \: \:  \: \:  \:  \:\:\:  \:  :  \implies      \:  \sf \: BD  ^{2}   =( BY ^{2}   + CY ^{2}) +    CD ^{2}   + 2 CD \times CY \\

 \\ \green{ \boxed{ \rm \: In  \: ∆BYC , \: By  \: Pythagoras  \: theorem \:  \: BC² = BY² + CY ²}} \\

Therefore,

  \:  \:  \:  \: \sf \underline{  \:  \: BD² = BC² + CD² + 2CD×CY .......................(3)\:  \:  }

From equation 1 ,

AC² = AX² + CX²

putting CX = CD - DX

 \\   \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \sf { \longrightarrow} \: AC² = AX² + (CD - DX)² \\  \\

 \\   \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \sf { \longrightarrow} \: AC² = AX² + CD ^{2} - DX ²  + 2CD  \times  DX\\  \\

 \\ \green{  \boxed{ \rm \: In  \: ∆AXD , \: By  \: Pythagoras  \: theorem \:  \: AD^{2} = AX^{2} + D X ^{2} } }\\

 \\   \:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \sf { \longrightarrow} \: AC² = AD² + CD ^{2}   + 2CD  \times  DX\\  \\

 \\ \green{  \boxed{ \rm  \:  \:  \: In  \: parallelogram  \: ABCD , \: opposite  \: sides \:  are \:  equal ,   \:  \: \therefore \:  \:  CD = AB } }\\

 \\   \:   \:\:   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \sf { \longrightarrow}  \:  \:  \:  \: \: AC² = AD² + AB ^{2}   + 2CD  \times  DX \: ...................... \: (4)\\  \\

Hence, The equations are

 \\   \:  \:  \:  \: \sf   \:  \: BD² = BC² + CD² + 2CD×CY .......................(3)\:  \:   \\

 \\   \:   \:\sf   \:  \:  \:  \: \: AC² = AD² + AB ^{2}   + 2CD  \times  DX \: ...................... \: (4)\\

Now,

Adding equation 3 & 4 ,

 \\  \:  \:  \:  \:  \:  \:  \:  \sf \: BD² + AC² = BC² + 2CD.CY + AD² + AB² - 2CD.DX \\

 \\  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :   \implies \: \:  \:  \sf \: BD² + AC² = BC²  + AD² + AB²  +  2CD (CY -  DX) ..................... \: (5)\\

Now, we need to prove CY = DX ,

In ∆AXD and ∆BYC ,

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \angle \: AXD =  \angle  \: BYC \: ..............................(\angle \: AXD =  \angle  \: BYC \: = 90 \degree \: by \: construction) \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  AD = BC  \:  \:  \:  \: ........................ \: (opposite  \: sides\: of \: parallelogram \:  are \:  equal) \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  AX = BY .......................... ( Perpendicular  \: bisectors )  \\

 \\    \:  \:  \:  \:  \:  \:  \sf \:  \pink{ ∆ AXD = ∆BYC \: ......................( SAS \:  congruency )} \\

Thus ,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:   \boxed{\blue{ \frak{ \:  DX = CY  \:  \: ................... \: (CPCT)}}} \\

Putting CY = DX in equation 5 ,

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :   \implies \: \:  \:  \sf \: BD² + AC² = BC²  + AD² + AB²  +  2CD ( \bold{CY }-  DX) ..................... \: (5)\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :   \implies \: \:  \:  \sf \: BD² + AC² = BC²  + AD² + AB²  +  2CD (  \bold{DX }\: -  DX) ..................... \: (5)\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :   \implies \: \:  \:  \sf \: BD² + AC² = BC²  + AD² + AB²  +  2CD  \times 0 ..................... \: (5)\\

 \\  \:  \:  \:  \:  \:  \:  \: \:  \:     \color{navy}\underline{\boxed{\rm \: BD² + AC² = BC²  + AD² + AB²  ..................... \: (5)}}\\

Hence proved ✅

Be brainly ♡

Attachments:

Anonymous: Outstanding !!! ✌️
Similar questions