Math, asked by Saiyama, 3 months ago

Prove that the sum of squares of sides of a parallelogram is equal to the sum of the squares of it's diagonals ?

Note :-
• Needed well explained and quality answers
• No spam
• No copy
• Don't go against the rules .

Answers

Answered by leightylogan
1

Answer:Answer

In parallelogram ABCD,

AB=CD and BC=AD

Draw perpendiculars from C and D on AB as shown.

In right angled △AEC,

⇒  (AC)

2

=(AE)

2

+(CE)

2

             [ By Pythagoras theorem ]

⇒  (AC)

2

=(AB+BE)

2

+(CE)

2

⇒  (AC)

2

=(AB)

2

+(BE)

2

+2×AB×BE+(CE)

2

               ----- ( 1 )

From the figure CD=EF                  [ Since CDFE is a rectangle ]

But CD=AB

⇒   AB=CD=EF

Also CE=DF                         [ Distance between two parallel lines

⇒  △AFD≅△BEC           [ RHS congruence rule ]

⇒  AF=BE                     [ CPCT ]

Considering right angled △DFB

⇒  (BD)

2

=(BF)

2

+(DF)

2

             [ By Pythagoras theorem ]

⇒  (BD)

2

=(EF−BE)

2

+(CE)

2

           [ Since DF=CE ]

⇒  (BD)

2

=(AB−BE)

2

+(CE)

2

          [ Since EF=AB ]

⇒  (BD)

2

=(AB)

2

+(BE)

2

−2×AB×BE+(CE)

2

         ----- ( 2 )

Adding ( 1 ) and ( 2 ), we get

(AC)

2

+(BD)

2

=(AB)

2

+(BE)

2

+2×AB×BE+(CE)

2

+(AB)

2

+(BE)

2

−2×AB×BE+(CE)

2

⇒  (AC)

2

+(BD)

2

=2(AB)

2

+2(BE)

2

+2(CE)

2

⇒  (AC)

2

+(BD)

2

=2(AB)

2

+2[(BE)

2

+(CE)

2

]        ---- ( 3 )

In right angled △BEC,

⇒  (BC)

2

=(BE)

2

+(CE)

2

          [ By Pythagoras theorem ]

Hence equation ( 3 ) becomes,

⇒  (AC)

2

+(BD)

2

=2(AB)

2

+2(BC)

2

⇒  (AC)

2

+(BD)

2

=(AB)

2

+(AB)

2

+(BC)

2

+(BC)

2

∴  (AC)

2

+(BD)

2

=(AB)

2

+(BC)

2

+(CD)

2

+(AD)

2

 

∴  The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.

Step-by-step explanation:

Similar questions