Math, asked by aqdasrahman4739, 8 months ago

Prove That the sum of the diagonals of the parallelogram is equal to the sum of the squares of its sides

Answers

Answered by KaushalKishorKumar21
0

Answer:

In parallelogram ABCD,

AB=CD and BC=AD

Draw perpendiculars from C and D on AB as shown.

In right angled △AEC,

⇒  (AC)  

2

=(AE)  

2

+(CE)  

2

             [ By Pythagoras theorem ]

⇒  (AC)  

2

=(AB+BE)  

2

+(CE)  

2

 

⇒  (AC)  

2

=(AB)  

2

+(BE)  

2

+2×AB×BE+(CE)  

2

               ----- ( 1 )

From the figure CD=EF                  [ Since CDFE is a rectangle ]

But CD=AB

⇒   AB=CD=EF

Also CE=DF                         [ Distance between two parallel lines  

⇒  △AFD≅△BEC           [ RHS congruence rule ]

⇒  AF=BE                     [ CPCT ]

Considering right angled △DFB

⇒  (BD)  

2

=(BF)  

2

+(DF)  

2

             [ By Pythagoras theorem ]

⇒  (BD)  

2

=(EF−BE)  

2

+(CE)  

2

           [ Since DF=CE ]

⇒  (BD)  

2

=(AB−BE)  

2

+(CE)  

2

          [ Since EF=AB ]

⇒  (BD)  

2

=(AB)  

2

+(BE)  

2

−2×AB×BE+(CE)  

2

         ----- ( 2 )

Adding ( 1 ) and ( 2 ), we get

(AC)  

2

+(BD)  

2

=(AB)  

2

+(BE)  

2

+2×AB×BE+(CE)  

2

+(AB)  

2

+(BE)  

2

−2×AB×BE+(CE)  

2

 

⇒  (AC)  

2

+(BD)  

2

=2(AB)  

2

+2(BE)  

2

+2(CE)  

2

 

⇒  (AC)  

2

+(BD)  

2

=2(AB)  

2

+2[(BE)  

2

+(CE)  

2

]        ---- ( 3 )

In right angled △BEC,

⇒  (BC)  

2

=(BE)  

2

+(CE)  

2

          [ By Pythagoras theorem ]

Hence equation ( 3 ) becomes,

⇒  (AC)  

2

+(BD)  

2

=2(AB)  

2

+2(BC)  

2

 

⇒  (AC)  

2

+(BD)  

2

=(AB)  

2

+(AB)  

2

+(BC)  

2

+(BC)  

2

 

∴  (AC)  

2

+(BD)  

2

=(AB)  

2

+(BC)  

2

+(CD)  

2

+(AD)  

2

 

∴  The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.

Similar questions