Math, asked by shazia999, 1 year ago

prove that the sum of the square of the sides of a rhombus is equal to the of th
e square of its diagonal

Answers

Answered by Anonymous
10

In rhombus ABCD, AB = BC = CD = DA

We know that diagonals of a rhombus bisect each other perpendicularly.

That is AC ⊥ BD, ∠AOB=∠BOC=∠COD=∠AOD=90° and

Consider right angled triangle AOB

AB2 = OA2 + OB2   [By Pythagoras theorem]

⇒  4AB2 = AC2+ BD2

⇒  AB2 + AB2 + AB2 + AB2 = AC2+ BD2

∴ AB2 + BC2 + CD2 + DA2 = AC2+ BD2

Thus the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Attachments:

shazia999: kase lgi
shazia999: pta h mereko ki ni h achi
shazia999: ni h
shazia999: fyn
Similar questions