Math, asked by parmanandmgrPrince, 4 months ago

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides. ​

Answers

Answered by Anonymous
22

Solution:-

\sf\ In\: parallelogram\: ABCD,

\sf\ AB=CD\: and\: BC=AD

\sf\ Draw\: perpendiculars\: from\: C\: and\: D\: on

\sf\ AB\: as\: shown.

In right angled △AEC,

\sf\  (AC)^2 = (AE)^2 + (CE)^2

\sf\  [ By\: Pythagoras\: theorem ]

\sf\  (AC)^2 = (AB+BE)^2 + (CE)^2

\sf\  (AC)^2 = (AB)^2 + (BE)^2 + 2 × AB × BE

\sf\ + (CE)^2-- ( 1 )

From the figure CD = EF

\sf\ [Since\: CDFE\: is \:a\: rectangle]

\sf\ But\: CD=AB

\sf\   AB=CD=EF

\sf\ Also \:CE=DF

\sf\ [Distance\: between\: two\: parallel\: lines]

\sf\ △AFD≅△BEC [RHS \:congruence\: rule ]

\sf\  AF=BE [ CPCT ]

Considering right angled △DFB

\sf\  (BD)^2 = (BF)^2 + (DF)^2

\sf\ [ By\: Pythagoras\: theorem]

\sf\  (BD)^2 = (EF−BE)^2 + (CE)^2

\sf\ [ Since DF=CE ]

\sf\  (BD)^2 = (AB−BE)^2 + (CE)^2

\sf\ [ Since EF=AB ]

\sf\  (BD)^2 =(AB)^2 + (BE)^2−2×AB×BE

\sf\ +(CE)^2--- (2)

Adding (1) and (2), we get

\sf\ (AC)^2 +(BD)^2 =(AB)^2 +(BE)^2

\sf\  +2×AB×BE+(CE)^2 +(AB)^2 +(BE)^2−

\sf\ 2×AB×BE+(CE)^2

\sf\  (AC)^2 +(BD)^2 =2(AB)^2 +2(BE)^2

\sf\ +2(CE)^2

\sf\  (AC)^2 +(BD)^2 =2(AB)^2 +2[(BE)^2 +

\sf\ (CE)^2]       --- ( 3 )

In right angled △BEC,

\sf\  (BC)^2 =(BE)^2 +(CE)^2

\sf\  [ By\: Pythagoras\: theorem ]

Hence equation ( 3 ) becomes,

\sf\   (AC)^2 +(BD)^2 =2(AB)^2+2(BC)^2

\sf\   (AC)^2 +(BD)^2 =(AB)^2 +(AB)^2+

\sf\ (BC)^2+(BC)^2

\sf\  (AC)^2 +(BD)^2 =(AB)^2+(BC)^2

\sf\  +(CD)^2 +(AD)^2

∴ The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.

Attachments:
Answered by subhapoornima3
2

Answer:

yes it's equal.

Because square change, you get parallelogram..

it's easy...

Mark me as Brainlist

Similar questions