Prove That the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals...
Answers
Answered by
0
heyaa your answer is here
 In rhombus ABCD, AB = BC = CD = DA We know that diagonals of a rhombus bisect each other perpendicularly. That is AC ⊥ BD, ∠AOB=∠BOC=∠COD=∠AOD=90° and  Consider right angled triangle AOB AB2 = OA2 + OB2 [By Pythagoras theorem]  ⇒ 4AB2 = AC2+ BD2 ⇒ AB2 + AB2 + AB2 + AB2 = AC2+ BD2 ∴ AB2 + BC2 + CD2 + DA2 = AC2+ BD2 Thus the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
 In rhombus ABCD, AB = BC = CD = DA We know that diagonals of a rhombus bisect each other perpendicularly. That is AC ⊥ BD, ∠AOB=∠BOC=∠COD=∠AOD=90° and  Consider right angled triangle AOB AB2 = OA2 + OB2 [By Pythagoras theorem]  ⇒ 4AB2 = AC2+ BD2 ⇒ AB2 + AB2 + AB2 + AB2 = AC2+ BD2 ∴ AB2 + BC2 + CD2 + DA2 = AC2+ BD2 Thus the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
Answered by
3
In rhombus ABCD, AB = BC = CD = DA
We know that diagonals of a rhombus bisect each other perpendicularly.
That is AC ⊥ BD, ∠AOB=∠BOC=∠COD=∠AOD=90° and
Consider right angled triangle AOB
AB2 = OA2 + OB2 [By Pythagoras theorem]
⇒ 4AB2 = AC2+ BD2
⇒ AB2 + AB2 + AB2 + AB2 = AC2+ BD2
∴ AB2 + BC2 + CD2 + DA2 = AC2+ BD2
Thus the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
We know that diagonals of a rhombus bisect each other perpendicularly.
That is AC ⊥ BD, ∠AOB=∠BOC=∠COD=∠AOD=90° and
Consider right angled triangle AOB
AB2 = OA2 + OB2 [By Pythagoras theorem]
⇒ 4AB2 = AC2+ BD2
⇒ AB2 + AB2 + AB2 + AB2 = AC2+ BD2
∴ AB2 + BC2 + CD2 + DA2 = AC2+ BD2
Thus the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
Attachments:
Similar questions
Physics,
7 months ago
Math,
7 months ago
Social Sciences,
7 months ago
Math,
1 year ago
Psychology,
1 year ago
Math,
1 year ago