Math, asked by huzaifa00, 3 months ago

prove that the sum of two odd numbers is always even by two different methods​

Answers

Answered by PinkVodka
3

\sf\pink{Answer\:-}

  • Let the two odd numbers be, 2a+1 and 2b+1. So, 2a+1 + 2b+1 = 2(a+b)+2 = 2(a+b+1), which is even.

Hence, proven.

Answered by Anonymous
16

\huge\underbrace\pink{★AɴSᴡᴇʀ★}

Let x and y be two odd numbers. 

Then x=2m+1 for some natural number m and y=2n+1 for some natural number n.

 Lets take out their sum.

Thus x+y=2m+1+2n+1=2(m+n+1)Here with the addition 2 in there.

Therefore, x+y is divisible by 2 and is even.

{\huge\fbox\pink{H}\fbox\blue{O}\fbox\purple{P}\fbox\green{E}\fbox\red{I}\fbox \red{T}\fbox\orange{Z}\fbox\pink{H}\fbox\blue{O}\fbox\red{P}\fbox\purple{E}\fbox\red{U}}

Similar questions